首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
For a model molecular system with one vibrational degree of freedom and three electronic states coupled by pump and probe laser pulses in a condensed medium, the response signal in a femtosecond pump-probe experiment is calculated. The potential curves of all three states are described by the Morse potential. Calculations are performed using two qualitatively different approaches to describing the medium-induced relaxation: with memory of the relaxation process and without memory (Markovian approximation). The temporal evolution of the vibrational wave packet in the intermediate electronically excited state is described using a master equation for the density matrix of the molecular system, which is derived within the framework of the Nakajima-Zwanzig formalism. It is demonstrated that, at short delay times, when the proposed approach is applicable, taking into account memory effects can substantially change the form of the pump-probe experiment signal in comparison with the signal calculated in the Markovian approximation.  相似文献   

2.
In this paper, ultrafast time-resolved coherent degenerate four-wave-mixing (DFWM) spectroscopy is performed to investigate molecular dynamics in the gaseous phase. Laser pulses lasting for 40 fs are used to create and monitor different vibrational eigenstates of iodine at room temperature (corresponding to a low saturation pressure of about 35 Pa). Using an internal time delay in the DFWM process resonant with the transition between the ground X-state and the excited B-state, the vibrational states of both the electronically excited and the ground states are detected as oscillations in the DFWM transient signal. The dynamics of either the electronically excited or ground state of iodine molecules obtained are consistent with the previous high temperature studies on the femtosecond time-resolved DWFM spectroscopy.  相似文献   

3.
杨建华  刘先斌 《物理学报》2012,61(1):10505-010505
研究了高频信号和微弱低频信号同时激励下线性时滞反馈对过阻尼双稳系统和Duffing振子系统中振动共振现象的影响. 解析分析和数值结果都表明, 系统对低频信号的响应幅值增益随时滞参数的变化同时呈现两种不同的周期性关系, 其周期分别为输入的高频信号和低频信号的周期. 数值结果还表明, 对不存在经典振动共振现象的单稳Duffing系统, 通过调节时滞参数也可以引发振动共振现象. 使用时滞反馈不仅可以有效地控制振动共振, 还可以进一步增强系统对微弱低频信号的响应. 关键词: 双稳系统 Duffing 系统 线性时滞反馈 振动共振  相似文献   

4.
5.
The phenomenon of vibrational resonance in a delayed multistable system that is excited by biharmonic signals is investigated in the present paper. Different from the former theory, the appearance and the disappearance of the vibrational resonance are controlled by adjusting the time delay parameter instead of modulating the amplitude of the high-frequency signal. The motion of the orbit within or between the different potential wells can also be controlled. Furthermore, based on both the methods of numerical simulation and analytical analysis, the behavior of delay-induced multiple vibrational resonance and its mechanism are investigated and discussed. The multiple vibrational resonance, which is quantified by the response amplitude at the low-frequency, is found to be periodic in the delay parameter with two periods, i.e., the periods of the two driven signals. The method used in this paper gives a new way for controlling vibrational resonance in a multistable system.  相似文献   

6.
为了解决固定位置的声/振动干扰源引起的管道泄漏声检测的虚警或者漏点定位错误问题,利用泄漏信号源和固定干扰源之间的独立性,通过盲卷源分离算法得到泄漏信号在一定代价函数下的最优估计,并将该估计作为输入信号从检测信号中自适应预测得到泄漏信号,这样就可以保留泄漏信号中的时延信息。对实际检测信号的处理表明,应用提出来的方法可以有效的去除检测信号中来自固定干扰源的噪声,同时不损失泄漏信号中的时延信息,可在固定干扰源存在时实现管道泄漏有效检测和准确定位。   相似文献   

7.
Tunnelling electrons may scatter inelastically with an adsorbate, releasing part of their energy through the excitation of molecular vibrations. The resolution of inelastic processes with a low temperature scanning tunnelling microscope (STM) provides a valuable tool to chemically characterize single adsorbates and their adsorption mechanisms. Here, we present a molecular scale picture of single molecule vibrational chemistry, as resolved by STM. To understand the way a reaction proceed it is needed knowledge about both the excitation and damping of a molecular vibration. The excitation is mediated by the specific coupling between electronic molecular resonances present at the Fermi level and vibrational states of the adsorbate. Thus, the two-dimensional mapping of the inelastic signal with an STM provides the spatial distribution of the adsorbate electronic states (near the Fermi level) which are predominantly coupled to the particular vibrational mode observed. The damping of the vibration follows a competition between different mechanisms, mediated via the creation of electron-hole pairs or via anharmonic coupling between vibrational states. This latter case give rise to effective energy transfer mechanisms which eventually may focus vibrational energy in a specific reaction coordinate. In this single-molecule work-bench, STM provides alternative tools to understand reactivity in the limit of low excitation rate, which demonstrate the existence of state-specific excitation strategies which may lead to selectivity in the product of a reaction.  相似文献   

8.
Time-and frequency-resolved broadband transient grating(BB-TG) spectroscopy is used to distinguish between ground-and excite-electronic state vibrational coherence at different wavelengths. Qualitative theoretical analysis using double-sided Feynman diagrams indicates that a superposition of ground and excited state vibrational coherence are contained in the ground state absorption(GSA) and stimulated emission(SE) overlap band, while only the excited state is contained in the excited state absorption(ESA) band. The TG experiment, in which a white light continuum(WLC) is adopted as a probe, is conducted with rhodamine101(Rh101~+) as the target molecule. Fourier analysis of TG dynamics in a positive delay time range at specific wavelengths enables us to distinguish the low-frequency vibrational modes of Rh101 in ground-and excite-electronic states.  相似文献   

9.
The ground and low-lying vibrational states of nitric acid are observable with current instrumentation in the Earth’s thermal submillimeter atmospheric emission. Remote sensing continues to improve to higher sensitivity and future missions will allow these measurements with minimal integration time. Sensing of weaker spectral features will require signal averaging, and choices of spectral windows for these features will require knowledge of the higher vibrational states and rare isotopes of the strongly emitting species. Nearly comprehensive information on vibrational states and isotopically substituted species is now available from wide bandwidth scans of natural and isotopically enriched nitric acid. In this work, ground state rotational spectra of five isotopically substituted species of nitric acid are analyzed in the submillimeter spectral range. We present the Hamiltonian parameters necessary for prediction and identification of isotopic features across the nitric acid ground state rotational spectrum.  相似文献   

10.
Anomalous delay of phonons reflected from the surface of a superlattice   总被引:2,自引:0,他引:2  
We study theoretically the propagation of acoustic phonons in a superlattice (SL) with a free surface. A phonon incident normally on the SL from a substrate is perfectly reflected, but it comes back to the substrate either with a time delay or with a time advance. Specifically the time delay is enhanced considerably if the frequency of the incident phonon coincides with an eigenfrequency of the vibrational modes localized at the surface of the SL. This suggests the observability of the surface vibrational modes by a time-resolved phonon reflection experiment.  相似文献   

11.
王军  刘芳  岳大光  赵娟  许燕  孟庆田  Liu Wing-Ki 《中国物理 B》2010,19(12):123301-123301
The time-dependent wave packet method is used to investigate the influence of laser-fields on the vibrational population of molecules.For a two-state system in laser fields,the populations on different vibrational levels of the upper and lower electronic states are given by wavefunctions obtained by solving the Schro¨dinger equation with the splitoperator method.The calculation shows that the field parameters,such as intensity,wavelength,duration,and delay time etc.can have different influences on the vibrational population.By varying the laser parameters appropriately one can control the evolution of wave packet and so the vibrational population in each state,which will benefit the light manipulation of atomic and molecular processes.  相似文献   

12.
We show that the de-excitation to different vibrational levels of the ground state in NaH molecule can be controlled by using two delayed ultrashort pulses (4 fs Gaussian). A vibrational wave packet generated on the excited A1Σ+ state by the first pulse is de-excited back to the ground state by a second pulse after a time delay. The cross-section for de-excitation of the wave packet to different vibrational levels of the ground electronic state can be controlled by controlling the delay time between the two pulses as well as by choosing a pulse duration much shorter than the vibrational period of the molecule, such that the de-excited wave packet remains localized in the Franck–Condon region of a particular vibrational level of the ground state. Hence, the de-excitation to a particular vibrational level can be enhanced by suppressing that in others. In spite of the large bandwidth of the pulse which includes nine vibrational levels of the upper state and five vibrational levels of the ground state, one can selectively de-excite the molecule to any one or two vibrational levels of the ground state by carefully choosing the delay time between the pulses and the pulse duration. We are designing the wave packet in the ground state by two short pulses and selectively distributing the population in one or two levels at various values of the delay time. In light molecules having small vibrational period, this selectivity in de-excitation to one or two vibrational levels in the ground state can be achieved only by using ultrashort (4 fs) pulses in the presence of which the localization of the wave packet in the Franck–Condon region of the vibrational levels are particularly possible. It has been shown that the de-excitation cross-section to a particular vibrational level oscillates with delay between the pulses which can be realized as a time-dependent quantum gate.  相似文献   

13.
We present simulations on pump-dump-probe experiments performed on the potassium dimer. The interaction of two time-delayed laser pulses prepares vibrational wave packets in the electronic ground state. The quantum calculations reveal to what extent it is possible to prepare a ground state superposition of states with high versus low vibrational quantum numbers by changing the pump-dump delay time. It is shown that transient signals may exhibit interference effects which are due to characteristics of ground state wave-packets composed of two components showing different vibrational dynamics. In this way the signals are able to yield information about vibrational overtone motion. Received 27 September 2000 and Received in final form 21 November 2000  相似文献   

14.
Effect of laser fields on Na2 interaction potentials is studied by calculating the time-resolved photoelectron spectrum (TRPES) with the time-dependent wave-packet method. It is shown that the photoelectron spectrum at different delay times reflects the population in different electronic states. We inspect the periodicity of vibrational motion in neutral states, and map the vibrational wave-packet propagation in corresponding internuclear coordinate.  相似文献   

15.
We proposed a scheme for the reconstruction of the quantum states for the center-of-mass vibrational mode of two trapped ions. In the scheme the ions are multichromatically excited by three lasers. Then measurement of the difference between probabilities of the ions being both in electronic ground and excited states directly yields the Wigner characteristic function for the center-of-mass vibrational state. The scheme can also be used to prepare entangled coherent states for the center-of-mass and relative vibrational modes.  相似文献   

16.
The authors have investigated collision vibrational energy transfer rate constants in NaK[1 3pi(v)] and He system. Pump laser excitation of the spin-forbidden band was used to produce very highly vibrationally excited metastable state NaK[1 3pi (v = 22, 21, 20)]. The probe laser was used to excite the 1 3pi (v = 22, 21, 20) to 5 3pi(v'). Laser induced fluorescence (LIF) from 5 3pi --> 1 3sigma+ transition was used to follow the collision dynamics. The semilog plots of time-resolved LIF was obtained. The slopes yielded the effective lifetimes. From such data several Stern-Volmer plots could be constructed and the relaxation rate constants could be extracted for the sum of all processes that give rise to the decay of the prepared vibrational state. The rate constants (in units of 10(-11) cm3 x s(-1)) for v being 22, 21 and 20 are 1.4 +/- 0.1, 1.2 +/- 0.1 and 1.0 +/- 0.1, respectively. The vibrational relaxation rate is increasing with vibrational quantum number. In order to determine the importance of multiquantum relaxation, it is necessary to measure the relative population of both the prepared state and collisionally populated states. By the kinetic equations governing up to delta(v) = 2 transitions, the time dependence of populations of the vibrational states were obtained. With the help of the integrating the population equations over all time, the importance of the two-quantum relaxation could be studied experimentally. By varying the delay between the pump and the probe laser, the He pressure dependent vibrational state specific decay could be measured. The time evolutions and relative intensities of the three states v = 22, 21 and 20 by preparing v = 22 were obtained. Using experimental data the rate constants (in units of 10(-11) cm3 x s(-1)) for v = 22 --> 21 and v = 22 --> 20 are 0.67 +/- 0.15 and 0.49 +/- 0.12, respectively. The single quantum relaxation accounts for only about 48% of the total relaxation out of v = 22. Multi-quantum relaxation (delta(v) > 1) was found to be important at high vibrational states.  相似文献   

17.
Heating rates after photoexcitation of several organic molecules have been studied by the transient grating spectroscopy with sub-picosecond laser pulses in solution and supercritical fluids. The rise time of the acoustic signal produced by the energy dissipation process of the hot ground state molecule was monitored. The acoustic signal was analyzed by an equation including the acoustic damping. The solvent temperature rise times in various media have been determined. The temperature rise times in solutions were longer than the vibrational energy relaxation times of the solutes determined by the transient absorption measurements. The difference was discussed in terms of the contribution of vibrational states in the energy transfer pathways from the solute to the solvent. It was found that the hydrogen-bonding between the solute and solvent play important roles in determining the energy transfer pathway from the solute to the solvent.  相似文献   

18.
19.
We propose a scheme to generate various nonclassical vibrational states in the collective motion of twotrapped ions, such as squeezed states, Schrodinger cat states, and SU(2) states. It is based on Raman-type excitations.Two-mode coupling between the center-of-mass and relative vibrational modes can also be realized.  相似文献   

20.
A new scheme for controlling photodissociation through preparation of a variationally optimized linear superposition of field free vibrational eigenstates is applied for selective control of IBr and HI dissociation. The dependence of photodissociation on various field parameters and initial conditions is examined to investigate the mechanistic basis of selective control. The parametric equations of motion approach for determining vibrational dynamics as a function of field parameters without having to solve the time dependent Schrödinger equation explicitly for each field parameter separately is outlined and its use to identify field characteristics which will provide the requisite population mix represented by the optimal linear superposition of vibrational states is advocated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号