首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RK Choudhury 《Pramana》2001,57(2-3):585-600
Nuclear fission process involves large scale shape changes of the nucleus, while it evolves from a nearly spherical configuration to two separated fission fragments. The dynamics of these shape changes in the nuclear many body system is governed by a strong interplay of the collective and single particle degrees of freedom. With the availability of heavy ion accelerators, there has been an impetus to study the nuclear dynamics through the investigations of nucleus-nucleus collisions involving fusion and fission process. From the various investigations carried out in the past years, it is now well recognized that there is large scale damping of collective modes in heavy ion induced fission reactions, which in other words implies that nuclear motion is highly viscous. In recent years, there have been many experimental observations in heavy ion induced fission reactions at medium bombarding energies, which suggest possible occurrence of various non-equilibrium modes of fission such as quasi-fission, fast fission and pre-equilibrium fission, where some of the internal degrees of freedom of the nucleus is not fully equilibrated. We have carried out extensive investigations on the fission fragment angular distributions at near barrier bombarding energies using heavy fissile targets. The measured fragment anisotropies when compared with the standard saddle point model (SSPM) calculations show that for projectile-target systems having zero or low ground state spins, the angular anisotropy exhibits a peak-like behaviour at the sub barrier energies, which cannot be explained by the SSPM calculations. For projectiles or targets with large ground state spins, the anomalous peaking gets washed out due to smearing of the K-distribution by the intrinsic entrance channel spins. Recently studies have been carried out on the spin distributions of fission fragments through the gamma ray multiplicity measurements. The fission fragments acquire spin mainly from two sources: (i) due to rigid rotation of the nascent fragments at scission and (ii) due to statistical excitation of the spin bearing collective modes in the fissioning nucleus. One of the collective modes — the tilting mode depends on the K quantum number and is responsible for the emission angle dependence of fragment spin. In our studies, we have shown conclusively that the collective statistical spin modes get strongly suppressed for high K values corresponding to large rotational frequencies along the fission axis. These results bring out the importance of the dynamical effects in the heavy ion induced fusion-fission reactions. The present article will review the work carried out on the above aspects in heavy ion fission reactions as well as on the fission time scales, and some of the recent studies on the mass-energy correlations of fission fragments at near-barrier bombarding energies.  相似文献   

2.
We report a theoretical analysis of the half-polarized quantum Hall states observed in a recent experiment. Our numerical results indicate that the ground state energy of the quantum Hall nu = 2 / 3 and nu = 2 / 5 states versus spin polarization has a downward cusp at half the maximal spin polarization. We map the two-component fermion system onto a system of excitons and describe the ground state as a liquid state of excitons with nonzero values of exciton angular momentum.  相似文献   

3.
The entry distribution in angular momentum and excitation energy for the formation of 254No has been measured after the 208Pb(48Ca,2n) reaction at 215 and 219 MeV. This nucleus is populated up to spin 22Planck's over 2pi and excitation energy greater, similar6 MeV above the yrast line, with the half-maximum points of the energy distributions at approximately 5 MeV for spins between 12Planck's over 2pi and 22Planck's over 2pi. This suggests that the fission barrier is greater, similar5 MeV and that the shell-correction energy persists to high spin.  相似文献   

4.
 We study the Gross-Pitaevskii functional for a rotating two-dimensional Bose gas in a trap. We prove that there is a breaking of the rotational symmetry in the ground state; more precisely, for any value of the angular velocity and for large enough values of the interaction strength, the ground state of the functional is not an eigenfunction of the angular momentum. This has interesting consequences on the Bose gas with spin; in particular, the ground state energy depends non-trivially on the number of spin components, and the different components do not have the same wave function. For the special case of a harmonic trap potential, we give explicit upper and lower bounds on the critical coupling constant for symmetry breaking. Received: 1 December 2001 / Accepted: 19 April 2002 Published online: 6 August 2002  相似文献   

5.
Gamma-ray multiplicities have been measured following fission of nuclei with a wide range of mass and angular momentum. The average multiplicity reflects the total angular momentum of the fragments, but the observed variation of multiplicity with fragment mass asymmetry is dominated by shell effects. The highest average multiplicity arises fission of the heaviest compound system, produced with the lowest angular moméntum. This behaviour is well described by spin enhancement through statistical excitation.  相似文献   

6.
The fission cross sections and the evaporation residue cross sections for 12C+209Bi and 14N+Pb reactions were measured with the gold surface barrier silicon detectors and the mica nuclear track detectors.The critical angular momentum ler was deduced from the measured evaporation residue cross section σer on the basis of the sharp-off model.The fission barrier with the particular angular momentum i derived from the condition Γfn=1 at l=le The angular momentum effect of the fission barrier was studied experimentally.  相似文献   

7.
We propose a simple scheme for generating rotating atomic clusters in an optical lattice which produces states with quantum Hall and spin liquid properties. As the rotation frequencies increase, the ground state of a rotating cluster of spin-1 Bose atoms undergoes a sequence of (spin and orbit) transitions, which terminates at an angular momentum L(*) substantially lower than that of the boson Laughlin state. The spin-orbit correlations reflect "fermionization" of bosons facilitated by their spin degrees of freedom. We also show that the density of an expanding group of clusters has a scaling form which reveals the quantum Hall and spin structure of a single cluster.  相似文献   

8.
The angular momentum transferred to fragment spins has been studied in the damped nuclear reactions Ar+Bi at 255 MeV and 295 MeV and Ni+Pb at 435 MeV from measurement of the angular distribution of the fission fragments of the heavy-recoil nucleus in coincidence with the projectile-like fragment. The heavy-fragment spin is strongly aligned along the normal to the reaction plane and the rigid-rotation limit of the dinuclear system is attained. The dealignment mechanisms produce spin components mainly located in a plane approximately perpendicular to the heavy-recoil lab direction. They are well described by a dynamical model based on the nucleon exchange between the two ions during the collision. The spin-component fluctuations reach high values. In the heavy-recoil direction, these fluctuations are increasing with the total kinetic energy loss and the charge transfer from the projectile to the target. The spin values extracted from both the angular distributions and the fission probabilities are seen to be compatible.  相似文献   

9.
The high efficiency of the new-generation of γ-arrays as EUROGAM or GAMMASPHERE makes reachable the fission limit in angular momentum of the nuclei populated by means of heavy ion reactions in the A ≈ 190 mass region. This is established by the strong correlation between the fissility parameters Z 2/A and the spin values of the state of highest energy observed in the yrast superdeformed bands.  相似文献   

10.
We demonstrate quantum control of a large spin angular momentum associated with the F=3 hyperfine ground state of 133Cs. Time-dependent magnetic fields and a static tensor light shift are used to implement near-optimal controls and map a fiducial state to a broad range of target states, with yields in the range 0.8-0.9. Squeezed states are produced also by an adiabatic scheme that is more robust against errors. Universal control facilitates the encoding and manipulation of qubits and qudits in atomic ground states and may lead to the improvement of some precision measurements.  相似文献   

11.
《Nuclear Physics A》1987,475(2):327-337
Spontaneous fission half-lives of K-isomeric states are calculated on the basis of microscopic- macroscopic method. The isomeric state is assumed to be a 2-quasiparticle excited state with high angular momentum.The calculations were performed for nuclei with 96 < Z < 110 and 144 < N < 158. It was shown that in the case of K-isomeric states (if they exist) the spontaneous fission half-life time may be comparable to the spontaneous fission half-life time of the ground state. Therefore it was suggested that in measurements of fission half-lives it may be very important to distinguish between both possible components (or more) of the fission decay.  相似文献   

12.
王书松  张素英 《计算物理》2021,38(1):113-119
研究谐振子势与高斯势联合势阱中玻色爱因斯坦凝聚体的基态。发现凝聚体形成巨涡旋时,其涡旋个数等于平均角动量,且凝聚体密度分布和角动量密度分布相同,进而得到凝聚体形成巨涡旋时所处基态是角动量的本征态。发现势阱从各向同性的环形势阱逐渐变为各向异性的环形势阱的过程中,凝聚体的平均角动量与涡旋个数之比先由1平缓下降,然后迅速下降,最后保持在0.5附近。同时给出凝聚体密度分布和角动量分布的特征,并作出相应解释。  相似文献   

13.
The concept of transition fission states, which was successfully used to describe the angular distributions of fragments for the spontaneous and low-energy induced fission of axisymmetric nuclei, proves to be correct if the spin projection onto the symmetry axis of a fissile nucleus is an integral of the motion for the external region from the descent of the fissile nucleus from the external fission barrier to the scission point. Upon heating a fissile nucleus in this region to temperatures of T ≈ 1 MeV (this is predicted by many theoretical models of the fission process), the Coriolis interaction uniformly mixes the possible projections of the fissile-nucleus spin for the case of low spin values, this leading to the loss of memory about transition fission states in the asymptotic region where the angular distributions of fragments are formed. Within quantum-mechanical fission theory, which takes into account deviations from A. Bohr’s formula, the angular distributions of fragments are calculated for spontaneously fissile nuclei aligned by an external magnetic field at ultralow temperatures, and it is shown that an analysis of experimental angular distributions of fragments would make it possible to solve the problem of spin-projection conservation for fissile nuclei in the external region.  相似文献   

14.
We report on Hartree-Fock-Bogoliubov (HFB) calculations of the ground-state rotational band of the heavy nucleus 254No recently observed experimentally. The calculated quadrupole deformation is consistent with the experimental value of β = 0.27 and is almost constant over the whole band. We also reproduce fairly well the excitation spectra and moments of inertia of this isotope up to the maximal experimentally observed state of spin 20. The rather high stability of this nucleus against fission is illustrated by the deformation energy curve providing very high fission barriers at zero spin within the HFB and HFB plus Lipkin-Nogami formalisms. The variation of these barriers with increased angular velocities is also studied. Received: 23 November 2000 / Accepted: 24 October 2001  相似文献   

15.
The Theory of angular momentum waves in pure ortho-hydrogen is presented in the Bloch spin wave approximation. Since there is a large energy gap between the ground state and the excitation this approximation can be justified. Quadrupole-quadrupole interaction of nearest neighbours is used. We have derived some dispersion curves and the spectrum.  相似文献   

16.
We examine what information can be obtained from fission angular distributions through precise measurements and an analysis in terms of the simple statistical model of Ericson. We report on the systematics of the decoupling angle and present the role of the angular momentum coupling between the entrance and the exit channel. The results indicate that the directional coupling of the angular momentum in the entrance and the exit channel is always strong for heavy-ion induced fission, and the angular momentum coupling plays a decisive role on the angular distribution of fission fragments. The average channel spins of fission fragments 〈If〉 are deduced through the decoupling angles determined experimentally. They agree well with γ-multiplicity measurements.  相似文献   

17.
Independent isomeric yield ratios of132I were radiochemically determined in alpha particle induced fission of238U in the energy range 25–44 MeV. Fission fragment angular momenta were deduced from the measured isomeric yield ratios using spin dependent statistical model analysis. It was seen that angular momentum of132I increases with increase of excitation energy and angular momentum of the fissioning nucleus. Comparison of the present data on132I in238U(α,f) with the literature data for the same product in238U(p, f) and238U(γ, f) at various excitation energies show that fragment angular momentum strongly depends on the input angular momentum in the range of excitation energy considered. Experimental fragment angular momentum at all excitation energies were seen to be in agreement with the theoretical values calculated based on thermal equilibration of the various collective rotational degrees after considering the occurence of multichance fission. Thus, strong effect of input angular momentum as well as the statistical equilibration among the various collective rotational degrees of freedom in medium energy fission is corroborated.  相似文献   

18.
A two dimensional, self consistent Thomas Fermi calculation of fission barriers, adapted to rotating nuclei at finite temperatures, is described. The Thomas-Fermi equations, applied to the205At nucleus, are solved by a procedure analogous to that adopted in solving constrained Hartree-Fock equations. It is shown that the computed fission barrier decreases with increasing temperature and angular momentum.  相似文献   

19.
We continue the discussion on the respective roles of individual and collective motion in the angular momentum distribution in fission fragments. As in our prior publications on the subject, the role of individual nucleon motion in fragments in the postscission configuration is underlined, and the central part in the discussion concerns phenomena observed in the spontaneous fission of even-even nuclei. A formalism is prepared to study the spin distribution of fragments in induced fission from high-spin states.  相似文献   

20.
By analysing the behaviour of a neutral particle with permanent magnetic dipole moment confined to a quantum dot in the presence of a radial electric field, Coulomb-type and linear confining potentials, then, an Aharonov–Bohm-type effect for bound states and a dependence of the angular frequency of the system on the Aharonov–Casher geometric phase and the quantum numbers associated with the radial modes, the angular momentum and the spin are obtained. In particular, the possible values of the angular frequency and the persistent spin currents associated with the ground state are investigated in two different cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号