首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Selective analysis of molecular states in scanning tunneling microscopy (STM) has so far been achieved in a few cases by tuning the bias range of the STM in high-resolution measurements. Correspondingly, perylene adsorbed in a close-packed monolayer on Ag(110) is imaged mainly through the pi states of the molecule. By contrast, functionalizing the STM tip with a perylene molecule leads to a mismatch between the energy levels of the STM tip and the molecule adsorbates and, instead, images only the metal states of the underlying silver surface. The observation opens a route for better energy selectivity in electron transport measurements through organic interfaces.  相似文献   

2.
《Surface science》1995,325(3):L435-L440
The (AgO) chains grown along the 〈001〉 direction on Ag(110) disappeared by the reaction with Cu atoms at room temperature, and new one-dimensional chains grew in the 〈110〉 direction. The STM images at different bias potentials suggest the growth of (CuO) chains in the 〈110〉 direction on the Ag(110) surface. The (CuO) chains on the Ag(110) surface disappeared by heating to 470 K, but they reappeared by exposing to O2 at room temperature.  相似文献   

3.
The influence of Ag atoms on the adsorption statuses of individual fullerene molecules on Si surface at room temperature has been investigated by scanning tunneling microscopy. For a fullerene molecule, its adsorption status can be switched from one initial state into multiple final states by attaching Ag atoms onto various parts of the molecule. Once silver atoms are removed from the adsorption sites by a STM tip, the adsorption statuses of the fullerene molecules are recovered as that for fullerene molecules on a bare Si surface.  相似文献   

4.
Field-induced transfer of Li atoms from a [110]-oriented W tip to a Pt sample is realized in the scanning tunneling microscope (STM) under UHV conditions, using a working principle of the new solid state Li surface diffusion metal ion source (Li-SDMIS), in which the supply of Li to the apex of the tip occurs via surface diffusion. By applying 5–10 μs voltage pulses to the Li-covered W tip placed within tunneling range, single Li hillocks (400 × 400 Å2) were formed on the chosen area of the Pt(110) sample in a well-rep way. The pulse magnitude necessary for Li emission displays a distinct threshold character. A comparative analysis of the energetics of Li field desorption in the STM and Li-FDM (lithium field desorption microscope) modes indicates chemically-assisted field desorption of Li as the field-induced transfer mechanism.  相似文献   

5.
We review the recently developed three-dimensional (3D) atom-superposition approach for simulating scanning tunneling microscopy (STM) and spectroscopy (STS) based on ab initio electronic structure data. In the method, contributions from individual electron tunneling transitions between the tip apex atom and each of the sample surface atoms are summed up assuming the one-dimensional (1D) Wentzel–Kramers–Brillouin (WKB) approximation in all these transitions. This 3D WKB tunneling model is extremely suitable to simulate spin-polarized STM and STS on surfaces exhibiting a complex noncollinear magnetic structure, i.e., without a global spin quantization axis, at very low computational cost. The tip electronic structure from first principles can also be incorporated into the model, that is often assumed to be constant in energy in the vast majority of the related literature, which could lead to a misinterpretation of experimental findings. Using this approach, we highlight some of the electron tunneling features on a prototype frustrated hexagonal antiferromagnetic Cr monolayer on Ag(111) surface. We obtain useful theoretical insights into the simulated quantities that is expected to help the correct evaluation of experimental results. By extending the method to incorporate a simple orbital dependent electron tunneling transmission, we reinvestigate the bias voltage- and tip-dependent contrast inversion effect on theW(110) surface. STM images calculated using this orbital dependent model agree reasonably well with Tersoff-Hamann and Bardeen results. The computational efficiency of the model is remarkable as the k-point samplings of the surface and tip Brillouin zones do not affect the computational time, in contrast to the Bardeen method. In a certain case we obtain a relative computational time gain of 8500 compared to the Bardeen calculation, without the loss of quality. We discuss the advantages and limitations of the 3D WKB method, and show further ways to improve and extend it.  相似文献   

6.
The plasmon-enhanced light emission of rutile TiO_2(110) surface has been investigated by a low-temperature scanning tunneling microscope(STM). We found that the photon emission arises from the inelastic electron tunneling between the STM tip and the conduction band or defect states of TiO_2(110). In contrast to the Au(111) surface, the maximum photon energy as a function of the bias voltage clearly deviates from the linear scaling behavior, suggesting the non-negligible effect of the STM tip on the band structure of TiO_2. By performing differential conductance( dI/dV) measurements, it was revealed that such a deviation is not related to the tip-induced band bending, but is attributed to the image charge effect of the metal tip, which significantly shifts the band edges of the TiO_2(110) towards the Femi level(E_F) during the tunneling process. This work not only sheds new lights onto the understanding of plasmon-enhanced light emission of semiconductor surfaces, but also opens up a new avenue for engineering the plasmon-mediated interfacial charge transfer in molecular and semiconducting materials.  相似文献   

7.
We present a study of the interaction of a W STM tip and the (110) and (111) surfaces of Pb. Atomic resolution has been obtained at room temperature on Pb(110) and up to 330 K on Pb(111). At higher temperatures the surfaces can jump to mechanical contact with the STM tip, resulting in the formation of a connecting neck of Pb between tip and surface. As the tip is retracted, the neck elongates and finally breaks. The dependence of the maximum neck size on the temperature and the tip retraction speed indicates that surface diffusion is responsible for the neck build-up. When the surface is partially oxidized the maximum neck size is reduced. We derive a scaling relation between the maximum neck size, the retraction speed and the surface diffusion coefficient. With this relation and the temperature dependence of the maximum neck size we obtain activation energies for the neck build-up of 1.3 and 0.9 eV respectively for necks on Pb(110) and Pb(111). When a neck breaks, either a crater or a hillock is left on the surface.  相似文献   

8.
The electronic current originating in a scanning tunneling microscope (STM) can be used to induce motion and desorption of adsorbates on surfaces. The manipulation of CO molecules on noble metal surfaces is an academic case that has received little theoretical attention. Here, we do thorough density functional theory calculations that explore the chemisorption of CO on Cu(110) and Ag(110) surface and its vibrational properties. The STM induced dynamics are explored after excitation of the highest lying mode, the C–O stretch. In order to give a complete account of this dynamics, the lifetime of the different CO modes is evaluated (by only including the mode decay into electronic excitations of the host surface) as well as the intermode coupling. Hence, after excitation of the stretch mode, the lower-energy modes are populated via intermode coupling and depopulated by electron-hole excitations. This study reveals the intrinsic features of the STM induced motion of CO on Cu(110) and Ag(110).  相似文献   

9.
T. Kwapiński  M. Ja?ochowski 《Surface science》2010,604(19-20):1752-1756
The influence of STM tip electronic states on the electron transport through an atomic object on a surface is studied both experimentally and theoretically. We present scanning tunnelling spectroscopy (STS) experimental results on Ag islands with two, blunt and sharp, STM tips. The data taken with the sharp tip have an additional peak at positive bias which corresponds to the tip apex atom state. We show that sudden tip sharpness variation and corresponding I(V) characteristic change may help to differentiate between electronic states of the tip and the sample. The experimental data are discussed and compared with theoretical calculations performed for two different tips. The current and differential conductance calculations are carried out by means of the Green's function technique and a tight-binding Hamiltonian.  相似文献   

10.
We study the lateral and vertical manipulations of single Ag and Cu atoms on the Ag(1 1 1) surface with the Cu single-atom and trimer-apex tips using molecular statics simulations. The reliability of the lateral manipulation with the Cu single-atom tip is investigated, and compared with that for the Ag tips. We find that overall the manipulation reliability (MR) increases with the decreasing tip height, and in a wide tip-height range the MR is better than those for both the Ag single-atom and trimer-apex tips. This is due to the stronger attractive force of the Cu tip and its better stability against the interactions with the Ag surface. With the Cu trimer-apex tip, the single Ag and Cu adatoms can be picked up from the flat Ag(1 1 1) surface, and moreover a reversible vertical manipulation of single Ag atoms on the stepped Ag(1 1 1) surface is possible, suggesting a method to modify two-dimensional Ag nanostructures on the Ag(1 1 1) surface with the Cu trimer-apex tip.  相似文献   

11.
Facile nucleation and growth of bilayer Ag(110) islands on NiAl(110) is observed by STM for Ag deposition at temperatures as low as 127 K. Density functional theory analysis for supported Ag films determines adatom adsorption energies (which favor bilayer islands), interaction energies, and diffusion barriers. Analysis of an atomistic lattice-gas model incorporating these energies elucidates the role of strongly anisotropic interactions in enabling the upward mass transport needed for bilayer island formation.  相似文献   

12.
At low tunneling resistance, scanning tunneling microscopy (STM) images of a Rh(100) surface with adsorbed hydrogen reproducibly show protrusions in all bridge sites of the surface, leading to a naive interpretation of all bridge sites being occupied with H atoms. Using quantitative low-energy electron diffraction and temperature programmed desorption we find a much lower H coverage, with most H atoms in fourfold hollow sites. Density functional theory calculations show that the STM result is due to the influence of the tip, attracting the mobile H atoms into bridge sites. This demonstrates that STM images of highly mobile adsorbates can be strongly misleading and underlines the importance of additional analysis techniques.  相似文献   

13.
We report the results of STM investigation of the initial stage of Ag adsorption on an Si(110) surface. At 0.21 ML Ag coverage, the size and orientation of the unit cell correspond to the parameters of a 16 × 2 unit cell of clean Si(110) surface. With increasing of the Ag coverage up to 0.42 ML, the type of surface reconstruction changes to a 4 × 1-Si(110)-Ag structure. The text was submitted by the authors in English.  相似文献   

14.
Surface chemical reactions often require a ready supply of substrate atoms to occur. In principle, steps serve as an efficient source of these atoms, provided that detachment rates from the step edges are sufficiently large. In this paper, we characterize atomic detachment rates from steps on clean Ag(110) by examining step fluctuations. We show that these rates are sufficient to supply atoms to form the added-row reconstruction of oxidized Ag(110) when the oxygen partial pressure is low. For high oxygen pressures, however, we find that step detachment rates are slow compared with oxidation rates, and the step source of Ag is supplemented by vacancy-island generation on the terraces. These results are compared to those obtained for the similar O/Cu(110) and O/Ni(110) systems.  相似文献   

15.
We have investigated a room-temperature growth mode of ultrathin Ag films on a Si(111) surface with an Sb surfactant using STM in a UHV system. On the Sb-passivated Si surface, small sized islands were formed up to 1.1 ML. Flat Ag islands were dominant at 2.1 ML, coalescing into larger islands at 3.2 ML. Although the initial growth mode of Ag films on the Sb-terminated Si(111) surface was Volmer-Weber (island growth), the films were much more uniform than Ag growth on clean (Si(111) at the higher coverages. From the analysis of STM images of Ag films grown with and without an Sb surfactant, the uniform growth of Ag films using an Sb surfactant appears to be caused by the kinetic effects of Ag on the preadsorbed Sb layer. Our STM results indicated that Sb suppresses the surface diffusion of Ag atoms and increases the Ag-island density. The increased island density is believed to cause coalescence of Ag islands at higher coverages of Ag, resulting in the growth of atomically flat and uniform Ag islands on the Sb surfactant layer.  相似文献   

16.
Tunneling electrons-induced molecular fluorescence in organic film is enhanced by the surface plasmons. The plasmon enhancement can be expected not only by the plasmons of the substrate but also by the noble metal tip of scanning tunneling microscope (STM). In this report we investigate the tip effect in photoluminescence of meso-tetrakis(3,5-di-tertiarybutyl-phenyl)porphyrin (H2TBPP) film on indium tin oxide (ITO) combined with a STM. The experimental result shows the PL of molecules is enhanced by an Ag tip. This enhancement factor is evaluated larger than 2000.  相似文献   

17.
The W(110)/C-R(15×3) reconstructed surface has been studied by STM at variable tip-surface separation controlled by the tunneling gap resistance. A pronounced dependence of the STM image contrast as a function of tip height has been observed which is explained by the suppression of higher Fourier components, i.e. small wavelength features, with increasing tip height and an additional spatial dependence of the decay length of the surface wavefunction. As an important implication of our study we have found that STM images of non-trivial surface structures can depend critically on the tunneling gap resistance.  相似文献   

18.
The release of gold atoms from an octanethiol monolayer on Au(1 1 1) and the subsequent formation of single-layer-high gold islands have been investigated using a scanning tunnelling microscope (STM) in air. When the bias voltage between the STM tip and the sample is above the threshold for water electrolysis, reactive desorption of the thiol molecules takes place leading to the release of gold adatoms. The number of released atoms has been evaluated as a function of exposure to the tip current under both positive and negative bias voltages. Tip-induced ripening of the gold islands, and more interestingly, tip-induced disintegration of small islands are observed.  相似文献   

19.
The influence of a static scanning tunneling microscope (STM) tip on the diffusion of xenon atoms adsorbed on a Cu(1 1 0) stepped surface is studied. Semi-empirical potentials for the Xe-surface interaction and a N-body energy based method for the Xe-tip contribution are used to calculate the adsorption energy of adsorbates in the STM junction. First, we analyse the variation of this energy when the adatom is placed near a step edge and for different tip positions. When the tip is situated in the neighbourhood of the step edge, the Ehrlich-Schwoebel barrier experienced by the adatom is lowered. This opens a specific diffusion channel, allowing a possible crossing of the step edge. Second, through a kinetic Monte Carlo approach coupled to the elastic scattering quantum chemistry method, the noisy tunneling current created by the random motion of diffusing atoms in the vicinity of the tip can be analyzed. We show that, by counting the number of diffusion events, we can determine effective barriers related to the most dominant processes contributing to the diffusion at a particular temperature. We also demonstrate that the interaction mode of the tip (attractive or imaging) greatly modifies the diffusion processes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号