首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electronic structure of Sr2RuO4 is investigated by high angular resolution ARPES at several incident photon energies. We address the controversial issues of the Fermi surface (FS) topology and the van Hove singularity at the M point, showing that a surface state and the replica of the primary FS due to sqrt[2]xsqrt[2] surface reconstruction are responsible for previous conflicting interpretations. The FS thus determined by ARPES is consistent with the de Haas-van Alphen results, and it provides additional information on the detailed shape of the alpha, beta, and gamma sheets.  相似文献   

2.
We discuss first-principles simulations of angle-resolved photoemission (ARPES) intensity in Bi2212 where the photoexcitation process is modeled realistically by taking into account the full crystal wavefunctions of the initial and final states in the presence of the surface. Some recent results aimed at understanding the effects of the energy and polarization dependencies of the ARPES matrix element are presented. The nature of the Fermi surface (FS) maps obtained via ARPES by holding the initial state energy fixed at the Fermi energy (EF) is clarified. The theoretically predicted FS map at 21 eV photon energy displays a remarkable level of agreement with the corresponding ARPES spectrum taken over a large area of the (kx,ky) plane. Our analysis shows how the ARPES matrix element can help disentangle closely spaced energy levels and FS sheets and highlight different aspects of the electronic spectrum in complex materials under various experimental conditions.  相似文献   

3.
The electronic structure of CeNiSn, which is considered a possible topological Kondo insulator, has been investigated by employing synchrotron radiation excited angle-resolved photoemission spectroscopy (ARPES). We have found that the easy cleavage plane in CeNiSn is (101), for which we have investigated the Fermi surface (FS) and band structures. The measured FS and ARPES for the (101) plane are described well by the calculated FS and band structures, obtained from the DFT calculations. The measured ARPES bands and photon energy map show that the metallic states crossing the Fermi level have the 3D nature, casting a negative suspicion for the existence of the topological surface states of the 2D character in CeNiSn. The Ce 4f Kondo resonance peak is observed in Ce 4d → 4f resonant photoemission spectroscopy, suggesting the importance of the Ce 4f electrons in determining the temperature-dependent topological electronic structure of CeNiSn.  相似文献   

4.
Angle-resolved photoelectron spectroscopy (ARPES) was used to study the Fermi surface of the heavy-fermion system YbRh(2)Si(2) at a temperature of about 10 K, i.e., a factor of 2 below the Kondo energy scale. We observed sharp structures with a well-defined topology, which were analyzed by comparing with results of band-structure calculations based on the local-density approximation (LDA). The observed bulk Fermi surface presents strong similarities with that expected for a trivalent Yb state, but is slightly larger, has a strong Yb-4f character, and deviates from the LDA results by a larger region without states around the Γ point. These properties are qualitatively explained in the framework of a simple f-d hybridization model. Our analysis highlights the importance of taking into account surface states and doing an appropriate projection along k(z) when comparing ARPES data with results from theoretical calculations.  相似文献   

5.
Surface states that have a dz2 symmetry around the center of the surface Brillouin zone(BZ)have been regarded common in closely-packed surfaces of rare-earth metals.In this work,we report the electronic structure of dhcp La(0001)thin films by ultrahigh energy resolution angle-resolved photoemission spectroscopy(ARPES)and first principle calculations.Our first principle analysis is based on the many-body approach,therefore,density function theory(DFT)combined with dynamic mean-field theory(DMFT).The experimentally observed Fermi surface topology and band structure close to the Fermi energy qualitatively agree with first principle calculations when using a renormalization factor of between 2 and 3 for the DFT bands.Photon energy dependent ARPES measurements revealed clear kZ dependence for the hole-like band around the BZ center,previously regarded as a surface state.The obtained ARPES results and theoretical calculations suggest that the major bands of dhcp La(0001)near the Fermi level originate from the bulk La 5d orbits as opposed to originating from the surface states.  相似文献   

6.
Electron accumulation states in InN have been measured using high resolution angle-resolved photoemission spectroscopy (ARPES). The electrons in the accumulation layer have been discovered to reside in quantum well states. ARPES was also used to measure the Fermi surface of these quantum well states, as well as their constant binding energy contours below the Fermi level E(F). The energy of the Fermi level and the size of the Fermi surface for these quantum well states could be controlled by varying the method of surface preparation. This is the first unambiguous observation that electrons in the InN accumulation layer are quantized and the first time the Fermi surface associated with such states has been measured.  相似文献   

7.
High resolution angle-resolved photoemission measurements on an underdoped (La(2-x)Srx)CuO4 system show that, at energies below 70 meV, the quasiparticle peak is well defined around the (pi/2,pi/2) nodal region and disappears rather abruptly when the momentum is changed from the nodal point to the (pi,0) antinodal point along the underlying "Fermi surface." It indicates that there is an extra low energy scattering mechanism acting upon the antinodal quasiparticles. We propose that this mechanism is the scattering of quasiparticles across the nearly parallel segments of the Fermi surface near the antinodes.  相似文献   

8.
High-resolution angle-resolved photoemission spectroscopy (ARPES) has been conducted to study the Shockley state (SS) in ferromagnetic Ni(1 1 1) located at the point of the surface Brillouin zone. We have determined the Fermi wave vector and Fermi energy of the state with excitation photon energies of  = 6.9-27.5 eV. On the basis of ARPES spectral shape analyses, we have found significant electron-electron interaction in the SS.  相似文献   

9.
角分辨光电子能谱技术及其应用进展   总被引:3,自引:0,他引:3  
角分辨光电子能谱(ARPES)是研究晶体表面电子结构,如能带,费米面,以及多体相互作用的重要工具。本文概述了光电子激发的一般过程和单粒子近似下的理论模型。详细讨论了角分辨光电子能谱的能带勾画(Energy Band Mapping)和费米面成像(Fermi Surface Mapping)技术,以及高分辨下的角分辨光电子能谱在强相关体系研究中的应用。文章最后简单介绍了当前角分辨光电子能谱研究的新进展,如研究宽禁带半导体材料的表面电子结构,有机功能材料与金属的界面,金属超薄膜中的量子阱态,以及高温超导机理研究等。  相似文献   

10.
We discuss selected results from our recent work concerning the angle-resolved photoemission (ARPES) spectra from the cuprates. Our focus is on developing an understanding of the effects of the ARPES matrix element and those of strong electron correlations in analyzing photointensities. With simulations on Bi2Sr2CaCu2O8+δ (Bi2212), we show that the ARPES matrix element possesses remarkable selectivity properties, such that by tuning the photon energy and polarization, emission from the bonding or the antibonding states can be enhanced. Moreover, at low photon energies (below 25 eV), the Fermi surface (FS) emission is dominated by transitions from just the O-atoms in the CuO2 planes. In connection with strong correlation effects, we consider the evolution with doping of the FS of Nd2−xCexCuOδ (NCCO) in terms of the tt′−U Hubbard model Hamiltonian. We thus delineate how the FS evolves on electron doping from the insulating state in NCCO. The Mott pseudogap is found to collapse around optimal doping suggesting the existence of an associated quantum critical point.  相似文献   

11.
We consider the effect of a short antiferromagnetic correlation length xi on the electronic band structure of the underdoped cuprates. Starting with a Fermi-surface topology consistent with magnetic-quantum-oscillation data, we show that a reduced xi gives an asymmetric broadening of the quasiparticle dispersion, resulting in simulated ARPES data very similar to those observed in experiment. Predicted features include "Fermi arcs" close to ak=(pi/2,pi/2), where a is the in-plane lattice parameter, without the need to invoke a d-wave pseudogap order parameter. The statistical variation in the k-space areas of the reconstructed Fermi-surface pockets causes the quantum oscillations to be strongly damped, even in very strong magnetic fields, in agreement with experiment.  相似文献   

12.
Experiments directly probing the electronic states using angle-resolved photoemission (ARPES) were carried out on La2/3Sr1/3MnO3 in order to elucidate its electronic properties. ARPES is a surface sensitive technique where bulk and surface states are usually both present. We present high-resolution ARPES studies in the (1 0 0) and (1 1 0) mirror planes and compare them with simulated ARPES based on GGA + U band structure calculations. In the (1 1 0) mirror plane we identify surface umklapps accounted by surface reconstruction which couple to bulk electronic states. As predicted by the simulated spectra there is additional spectral intensity at the Fermi level detected in ARPES data due to k-broadening effects in the photoemission final states. We demonstrate that this additional spectral intensity is a convenient spectral marker for determination of the kF Fermi momenta.  相似文献   

13.
Yue-Bo Liu 《中国物理 B》2021,30(11):117302-117302
We report an abnormal phenomenon that the source-drain current (ID) of AlGaN/GaN heterostructure devices decreases under visible light irradiation. When the incident light wavelength is 390 nm, the photon energy is less than the band gaps of GaN and AlGaN whereas it can causes an increase of ID. Based on the UV light irradiation, a decrease of ID can still be observed when turning on the visible light. We speculate that this abnormal phenomenon is related to the surface barrier height, the unionized donor-like surface states below the surface Fermi level and the ionized donor-like surface states above the surface Fermi level. For visible light, its photon energy is less than the surface barrier height of the AlGaN layer. The electrons bound in the donor-like surface states below the Fermi level are excited and trapped by the ionized donor-like surface states between the Fermi level and the conduction band of AlGaN. The electrons trapped in ionized donor-like surface states show a long relaxation time, and the newly ionized donor-like surface states below the surface Fermi level are filled with electrons from the two-dimensional electron gas (2DEG) channel at AlGaN/GaN interface, which causes the decrease of ID. For the UV light, when its photon energy is larger than the surface barrier height of the AlGaN layer, electrons in the donor-like surface states below the Fermi level are excited to the conduction band and then drift into the 2DEG channel quickly, which cause the increase of ID.  相似文献   

14.
The question of the anisotropy of the electron scattering in high temperature superconductors is investigated using high resolution angle-resolved photoemission data from Pb-doped Bi2Sr2CaCu2O8 (Bi2212) with suppressed superstructure. The scattering rate of low energy electrons along two bilayer-split pieces of the Fermi surface is measured (via the quasiparticle peak width), and no increase of scattering towards the antinode (pi,0) region is observed, contradicting the expectation from Q=(pi,pi) scattering. The results put a limit on the effects of Q=(pi,pi) scattering on the electronic structure of this overdoped superconductor with still very high T(c).  相似文献   

15.
We have performed an angle resolved photoemission study on a single crystal of the optimally electron doped (n-type) cuprate superconductor Nd2-xCexCuO4 (x=0.15) at a photon energy of 400 eV. The Fermi surface is mapped out and is, in agreement with earlier measurements, of hole-type with the expected Luttinger volume. However, comparing with previous low energy measurements, we observe a different Fermi surface shape and a different distribution of spectral intensity around the Fermi surface contour. The observed Fermi surface shape indicates a stronger electron correlation in the bulk as compared to the surface.  相似文献   

16.
We report a comprehensive angle-resolved photoemission spectroscopy study of the tridimensional electronic bands in the recently discovered Fe selenide superconductor (Tl,Rb)_{y}Fe_{2-x}Se_{2} (T_{c}=32 K). We determined the orbital characters and the k_{z} dependence of the low energy electronic structure by tuning the polarization and the energy of the incident photons. We observed a small 3D electron Fermi surface pocket near the Brillouin zone center and a 2D like electron Fermi surface pocket near the zone boundary. The photon energy dependence, the polarization analysis and the local-density approximation calculations suggest a significant contribution from the Se 4p_{z} and Fe 3d_{xy} orbitals to the small electron pocket. We argue that the emergence of Se 4p_{z} states might be the cause of the different magnetic properties between Fe chalcogenides and Fe pnictides.  相似文献   

17.
The Fermi surface (FS) of Bi2Sr2CaCu2O8+delta (Bi2212) predicted by band theory displays Bi-related pockets around the (pi, 0) point, which have never been observed experimentally. We show that when the effects of hole doping either by substituting Pb for Bi or by adding excess O in Bi2212 are included, the Bi-O bands are lifted above the Fermi energy (E(F)) and the resulting first-principles FS is in remarkable accord with measurements. With decreasing hole doping the Bi-O bands drop below and the system self-dopes below a critical hole concentration. Computations on other Bi- as well as Tl- and Hg-based compounds indicate that lifting of the cation-derived band with hole doping is a general property of the electronic structures of the cuprates.  相似文献   

18.
Low energy electron diffraction (LEED) experiments, LEED simulations, and finite slab density functional calculations are combined to study the cleavage surface of Co doped BaFe(2-x)Co(x)As2 (x = 0.1,0.17). We demonstrate that the energy dependence of the LEED data can only be understood from a terminating 1/2 Ba layer accompanied by distortions of the underlying As-Fe2-As block. As a result, surface-related Fe 3d states are present in the electronic structure, which we identify in angle resolved photoemission spectroscopy (ARPES) experiments. The close proximity of the surface-related states to the bulk bands inevitably leads to broadening of the ARPES signals, which excludes the use of the BaFe(2-x)Co(x)As2 system for accurate determination of self-energies using ARPES.  相似文献   

19.
We reveal the electronic structure in Yb Cd2Sb2,a thermoelectric material,by angle-resolved photoemission spectroscopy(ARPES)and time-resolved ARPES(tr ARPES).Specifically,three bulk bands at the vicinity of the Fermi level are evidenced near the Brillouin zone center,consistent with the density functional theory(DFT)calculation.It is interesting that the spin-unpolarized bulk bands respond unexpectedly to right-and left-handed circularly polarized probe.In addition,a hole band of surface states,which is not sensitive to the polarization of the probe beam and is not expected from the DFT calculation,is identified.We find that the non-equilibrium quasiparticle recovery rate is much smaller in the surface states than that of the bulk states.Our results demonstrate that the surface states can be distinguished from the bulk ones from a view of time scale in the nonequilibrium physics.  相似文献   

20.
Oxygen adsorption on a C-terminated α-Mo2C(0 0 0 1) surface has been investigated with Auger electron spectroscopy, low-energy electron diffraction, and angle-resolved photoemission spectroscopy utilizing synchrotron radiation. It is found that the oxygen atoms adsorb on the Mo atoms in the second layer forming a (1 × 1) orthorhombic periodicity. The oxygen adsorption induces a peculiar state around the Fermi level, which is observed at 0.4 eV in the normal-emission spectra. ARPES measurements show that the state is a partially occupied metallic state. The photoionization cross section of the state shows a maximum at the photon energy of 56 eV, which is assigned as originating from the resonance of the Mo 4d photoemission involving Mo 4p → 4d photoexcitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号