首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The spin-precession-induced current through ferromagnet/nanomagnet/superconductorjunctions is investigated by using the nonequilibrium Green’s function method. It is foundthat the charge current I c for the spinprecession frequency ω less than the energy gap Δ onlyarises from the equal-spin Andreev reflection, which is independent of the spinpolarization p of the ferromagnetic lead, while that forω > Δ mainly originates from the quasiparticle’scontribution. Both equal-spin AR and quasiparticle scattering processes contribute to thespin current I s and the quasiparticlescattering process plays a dominant role. WhileI c forω < Δ can be enhanced by the spin polarizationp, I s decreases withp. These features may be of interest for ongoing experiments in thefield of molecular spintronics.  相似文献   

2.
The current-voltage characteristic of Al/adsorbed monolayer/Pb junctions was measured at 77, 4.2 and 1.8K at applied voltages from 1 to 3 mV. At 77K the current changes linearly with voltage whereas at 4.2 and 1.8 K the relationship becomes nonlinear. From the results at 1.8 K we obtain an approximate band gap for Pb equal to 2.6 meV. The observation of a nonlinear current-voltage characteristic at temperatures where Pb becomes superconducting is strong evidence that the observed current through the insulator is a tunneling current.  相似文献   

3.
We have experimentally investigated the density of states (DOS) in Nb/Ni (S/F) bilayers as a function of Ni thickness, d(F). Our thinnest samples show the usual DOS peak at +/- Delta(0), whereas intermediate-thickness samples have an anomalous "double-peak" structure. For thicker samples (d(F) > or =3.5 nm), we see an inverted DOS, which has previously only been reported in superconductor or weak-ferromagnet structures. We analyze the data using the self-consistent nonlinear Usadel equation and find that we are able to quantitatively fit the features at +/- Delta(0) -- in particular the thickness at which the inversion occurs -- only if we include a large amount of spin-orbit scattering in the model. Interestingly, we are unable to reproduce the subgap structure through the addition of any parameter(s). Therefore, the observed anomalous subgap structure represents new physics beyond that contained in the present Usadel theory.  相似文献   

4.
Based on the nearly-free-electron approximation, the bias dependencies of electron transport properties of ferromagnet/ferromagnetic insulator (semiconductor)/ferromagnet junctions have been studied. Resonances appear in electron transmission probability. These resonances cause oscillations in the zero-temperature tunnel current and the resonances occur in tunnel conductance. Tunnel magnetoresistance (TMR) is an oscillatory function of bias. The TMR can reach a value as high as 100%. The bins dependencies of electron transport properties relate to the magnetic configurations of the junctions.  相似文献   

5.
We have fabricated longitudinal nanoconstrictions in the charge-density wave conductor (CDW) NbSe3 using a focused ion beam and using a mechanically controlled break-junction technique. Conductance peaks are observed below the TP1=145 K and TP2=59 K CDW transitions, which correspond closely with previous values of the full CDW gaps 2Delta1 and 2Delta2 obtained from photoemission. These results can be explained by assuming CDW-CDW tunneling in the presence of an energy gap corrugation epsilon2 comparable to Delta2, which eliminates expected peaks at +/-|Delta1+Delta2|. The nanometer length scales our experiments imply indicate that an alternative explanation based on tunneling through back-to-back CDW-normal-conductor junctions is unlikely.  相似文献   

6.
The Bogoliubov-de Gennes equation and Nambu spinor Green's function approach are applied to studying the Josephson current in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions in the clean limit. It is found that the critical current exhibits a damped oscillation with the F thickness d, the oscillation period equal to 2πξF with ξF the coherence length of the F. The change of the critical current from positive to negative is determined by factor cosφ with φ=d/ξF as the F-induced phase difference. The exponent decay of the critical current is close related to that of the superconductor order parameter in the F, both of them having the same decay length.  相似文献   

7.
Spin-dependent transport in ferromagnet/organic-ferromagnet/metal junctions is investigated theoretically. The results reveal a large tunneling magnetoresistance up to 3230% by controlling the relative magnetization orientation between the ferromagnet and the central organic ferromagnet. The mechanism is explained by distinct efficient spin-resolved tunneling states in the ferromagnet between the parallel and antiparallel spin configurations. The key role of the organic ferromagnet in generating the large magnetoresistance is explored, where the spin selection effect is found to enlarge the difference of the tunneling states between the parallel and antiparallel configurations by comparing with the conventional organic spin valves. The effects of intrinsic interactions in the organic ferromagnet including electron–lattice interaction and spin coupling with radicals on the magnetoresistance are discussed. This work demonstrates a promising potential of organic ferromagnets in the design of high-performance organic spin valves.  相似文献   

8.
李晓薇 《物理学报》2002,51(8):1821-1825
在超导体铁磁体绝缘层超导体结(SFIS)中,运用BogoliubovdeGennes(BdG)方程和FurusakiTsukada(FT)电流公式,计算铁磁超导共存态的自洽方程和SFIS结中的直流Josephson电流.研究表明,铁磁超导态的磁交换能h对准粒子的Andreev反射有抑制作用,使得SFIS结中的直流Josephson电流随铁磁超导共存态的磁交换能h增大而减弱 关键词: S/F-I-S结 铁磁超导态 直流Josephson电流  相似文献   

9.
《Physics letters. A》2004,325(2):166-174
By using the Bogoliubov–de Gennes equation and the Nambu spinor Greens function approach, we have theoretically studied the dc Josephson current and the coupling phase state of superconductor/ferromagnet/superconductor (SC/FM/SC) junctions, where the FM is of weak ferromagnetism. From the behavior of the temperature-dependent dc Josephson current (Ic), we confirm that such SC/FM/SC junction may change from 0-phase to π-phase state with increasing the temperature (T), for particular parameters of the thickness and the strength of ferromagnetism of the FM interlayer. We attribute such changement to an extra phase difference between the two SCs. The results are qualitatively consistent with an experiment [Phys. Rev. Lett. 86 (2001) 2427], which shows a sharp cusp structure on the IcT curves of Nb/Cu0.48Ni0.52/Nb junction for specific thickness of the Cu0.48Ni0.52, indicating the junction changes from 0-phase state at high temperatures to π-phase state at low temperatures.  相似文献   

10.
By applying an extended eight-component Bogoliubov–de Gennes equation, we study theoretically the tunneling conductance in clean ferromagnet/ferromagnet/iron pnictide superconductor (FM/FM/iron-based SC) heterojunctions. Under the condition of noncollinear magnetizations, twofold novel Andreev reflections exist due to the existence of two bands in the SC, in which the incident electron and the two Andreev-reflected holes, belonging to the same spin subband, form twofold spin-triplet pairing states near the FM/iron-based SC interface. It is shown that the conversions of the conductance not only between the zero-bias peak and valley at zero energy but also between the peaks and dips at two gap energies are strongly dependent on both the interband coupling strength in the SC and the spin polarization in the FM. The qualitative differences from tunneling into a conventional ss-wave SC are also presented, which may help with experimentally probing and identifying the antiphase ss-wave pairing symmetry in the iron-based SC.  相似文献   

11.
Taking into account the nonequilibrium spin accumulation, we apply a quantum-statistical approach to study the spin-polarized transport in a two-dimensional ferromagnet/semiconductor/ferromagnet (FM/SM/FM) double tunnel junction. It is found that the effective spin polarization is raised by increasing the barrier strength, resulting in an enhancement of the tunneling magnetoresistance (TMR). The nonequilibrium spin accumulation in SM may appear in both antiparallel and parallel alignments of magnetizations in two FMs, in particular for high bias voltages. The effects of spin accumulation and TMR on the bias voltage are discussed.  相似文献   

12.
We investigate the electronic structure of Fe/ZnSe/Fe magnetic tunnel junctions for which interdiffusion and reconstruction at the interfaces are considered. Taking into account the ab initio potential profile throughout the different layers of the structure, we discuss about its implications on the tunnel conductance. Our results show that interface reconstruction drives changes in the electronic structure which, in turn, produce an increase of the kinetic energy of the conduction electrons, independently of their spin orientation. We suggest that this reconstruction underlies the low tunnel magnetoresistance (TMR), as it is observed in transport measurements when compared with the theoretical value estimated for sharp interfaces.  相似文献   

13.
14.
Along the lines of Blonder, Tinkham and Klapwijk, we investigate the charge transport through ferromagnet/two-dimensional electronic gas/d-wave superconductor (F/2DEG/S) junctions in the presence of Rashba spin-orbit (SO) coupling and focus our attention on the interplay between spin polarization and spin precession. At zero spin polarization, the spin-mixing scattering resulted from Rashba SO coupling decreases the zero-bias conductance peak. Under spin polarization, spin precession introduces novel Andreev reflection, which competes with the effect of spin-mixing scattering. If the F layer is a half metal, the later effect is overwhelmed by that of novel Andreev reflection. As a result, the zero-bias conductance dip caused by spin polarization is enhanced, and at strong Rashba SO coupling, a split zero-bias peak is found in the gap. In an intermediate region where the two effects are comparable with each other, the zero-bias conductance shows a reentrant behavior as a function of Rashba SO coupling.  相似文献   

15.
The Josephson effect in the superconductor/ferromagnet/superconductor (SFS) graphene Josephson junction is studied using the Dirac Bogoliubov-de Gennes (DBdG) formalism. It is shown that the SFS graphene junction drives 0–π transition with the increasing of p=h0L/vF?, which captures the effects of both the exchange field and the length of the junction; the spin-down current is dominant. The 0 state is stable for p 〈 pc (critical value pc ≈ 0.80) and the π state is stable for p 〉 pc, where the free energy minima are at φg=0 and φg=π, respectively. The coexistence of the 0 and π states appears in the vicinity of pc.  相似文献   

16.
The Josephson currents in s-wave superconductor/ferromagnet insulator/p-wave superconductor(s/FI/p) junctions are calculated as a function of temperature and the phase taking into account the roughness scattering effect at interface. The phase dependence of the Josephson current I (φ) between s-wave and px-wave superconductor is predicted to be sin(2φ). The ferromagnet scattering effect, the barrier strength, and the roughness strength at interface suppress the dc currents in s/FI/p junction.  相似文献   

17.
The Josephson tunneling current in S-I-S structures where the main current transport channel is resonant tunneling through an isolated localized state is calculated using the Bogolyubov-de Gennes equations. It is shown that the efficiency of equilibrium Josephson resonant tunneling is determined only by the ratio of the width of the resonance level to the absolute value of the order parameter for the superconducting electrodes with arbitrary relationships among the system parameters. Zh. éksp. Teor. Fiz. 112, 342–352 (July 1997)  相似文献   

18.
Within a scattering framework, a theoretical study is presented for the spin-polarized quasiparticle transport in ferromagnet/d-wave superconductor junctions. We find that the subgap conductance behavior is qualitatively different from a nonmagnetic junction, and can also be significantly different from those of a ferromagnet/s-wave junction. For a ballistic ferromagnet/d-wave superconductor junction, under appropriate conditions, a zero-bias conductance minimum could be achieved. In addition, a conductance maximum at finite bias could be evolved by interfacial scattering. For a normal-metal/ferromagnet/d-wave superconductor junction, conductance resonances are predicted.  相似文献   

19.
We observe a subharmonic gap structure (SGS) and the Josephson effect in superconducting scanning tunneling microscope junctions with resistances below 100 kΩ. The magnitude of the n=2 SGS is shown to scale with the square of the junction normal state conductance, in agreement with theory. We show by analyzing the Josephson effect in these junctions that the superconducting phase dynamics are strongly affected by thermal fluctuations. We estimate the linewidth of the Josephson oscillations due to phase fluctuations, a quantity that may be important in modern theories of the subgap structure. While phase fluctuations may smear the SGS current onsets, we conclude that the sharpness of these onsets in our data is not limited by fluctuations.  相似文献   

20.
The tunneling conductance in topological insulator (TI) ferromagnet/p-wave superconductor (FM/pS) junction is studied based on the Blonder–Tinkham–Klapwijk (BTK) theory. The Fermi energy mismatch between FM and pS as well as the finite quasiparticle lifetime are considered. Three kinds of pairings px, py, and px+ipy-waves for pS are chosen. It is found that the spectrum strongly depend on the magnetic gap, the gate potential, the quasiparticle lifetime as well as the type of the pair potential symmetry. The pair potential symmetry drastically affects the formation of the zero-energy bound states dependent on the magneto effect or the Fermi energy mismatch effect. The finite quasiparticle lifetime effect can suppress the Andreev resonant scattering process at eV=Δ0 and smear the dips in the conductance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号