首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the non-equilibrium Green's method and density functional theory, the magnetic transport of Fephthalocyanine dimers with two armchair single-walled carbon nanotube electrodes is investigated. The results show that the system can present high-performance spin filtering, magnetoresistance, and low-bias spin negative differential resistance effects by tuning the external magnetic field. These results show that the Fe-phthalocyanine dimer has the potential to design future molecular spintronic devices.  相似文献   

2.
We report magnetic field spectroscopy measurements in carbon nanotube quantum dots exhibiting fourfold shell structure in the energy level spectrum. The magnetic field induces a large splitting between the two orbital states of each shell, demonstrating their opposite magnetic moment and determining transitions in the spin and orbital configuration of the quantum dot ground state. We use inelastic cotunneling spectroscopy to accurately resolve the spin and orbital contributions to the magnetic moment. A small coupling is found between orbitals with opposite magnetic moment leading to anticrossing behavior at zero field.  相似文献   

3.
姜艳  刘贵立 《物理学报》2015,64(14):147304-147304
碳纳米管作为最先进的纳米材料之一, 在电子和光学器件领域有潜在的应用前景, 因此引起了广泛关注. 掺杂、变形及形成超晶格为调制纳米管电子、光学性质提供了有效途径. 为了理解相关机理, 利用第一性原理方法研究了不同剪切形变下扶手椅型硼氮交替环状掺杂碳纳米管超晶格的空间结构、电子结构和光学性质. 研究发现, 剪切形变会改变碳纳米管的几何结构, 当剪切形变大于12%后, 其几何结构有较大畸变. 结合能计算表明, 剪切形变改变了掺杂碳纳米管超晶格的稳定性, 剪切形变越大, 稳定性越低. 电荷布居分析表明, 硼氮掺杂碳纳米管超晶格中离子键和共价键共存. 能带和态密度分析发现硼氮交替环状掺杂使碳纳米管超晶格从金属转变为半导体. 随着剪切形变加剧, 纳米管超晶格能隙逐渐减小, 当剪切形变大于12%后, 碳纳米管又从半导体变为金属. 在光学性能中, 剪切形变的硼氮掺杂碳纳米管超晶格的光吸收系数及反射率峰值较未受剪切形变的均减小, 且均出现了红移.  相似文献   

4.
A carbon nanotube (CNT)/zigzag graphene nanoribbons (ZGNRs) junctions has been proposed and investigated by first-principles calculations. The results show that large spin polarization of currents would be achieved when only one edge of ZGNR is coupled to the other lead. By virtue of spatial separation of edge state in two spin channel, one of those channels is opened at certain energy range and gives rise to spin-polarized currents under a low bias. This feature is stable whenever the ZGNR lead is under the antiferromagnetic ground states or is under the ferromagnetic states. Our findings indicate that this approach is simple and efficient for spintronics design.  相似文献   

5.
We formulate the problem of adsorption onto the surface of a carbon nanotube as a lattice gas on a triangular lattice wrapped around a cylinder. This model is equivalent to an XXZ Heisenberg quantum spin tube. We find density plateau structures for armchair, zigzag, and chiral nanotubes. The zigzags are special and have extensive zero temperature entropy plateaus in the classical limit. Quantum effects lift the degeneracy, leaving gapless excitations described by a c = 1 conformal field theory with compactification radius quantized by the tube circumference.  相似文献   

6.
《Physics letters. A》2014,378(16-17):1170-1173
We construct a molecular junction where propyl contacts two armchair carbon nanotubes through five-member ring and perform the first-principles calculations of its transport properties. The negative differential resistance effect with peak-to-valley ratio of 700% is present. Our investigations indicate that contact transparency can induce negative differential resistance in nanotube–molecule–nanotube junction, which may promise the potential application in nano-electronics devices in the future.  相似文献   

7.
Spin-filter effect is predicted in a weak coupled junction composed of a nonmagnetic metal electrode and a zigzag carbon nanotube. This effect is induced by the magnetic edge states of the nanotube, and can produce spin- polarized current in the absence of an external magnetic field. We find that the spin polarization of the current changes its sign at the half-filling point of the nanotube, thus electric field control of spin transport can be realized. Furthermore, we find the coupling strength of the junction may cause a magnetic transition on the edge of the nanotube.  相似文献   

8.
We demonstrate theoretically that it is possible to manipulate electron or hole spins all optically in semiconducting carbon nanotubes. The scheme that we propose is based on the spin-orbit interaction that was recently measured experimentally; we show that this interaction, together with an external magnetic field, can be used to achieve optical electron-spin state preparation with a fidelity exceeding 99%. Our results also imply that it is possible to implement coherent spin rotation and measurement using laser fields linearly polarized along the nanotube axis, as well as to convert spin qubits into time-bin photonic qubits. We expect that our findings will open up new avenues for exploring spin physics in one-dimensional systems.  相似文献   

9.
We make use of spin selection rules to investigate the electron spin system of a carbon nanotube double quantum dot. Measurements of the electron transport as a function of the magnetic field and energy detuning between the quantum dots reveal an intricate pattern of the spin state evolution. We demonstrate that the complete set of measurements can be understood by taking into account the interplay between spin-orbit interaction and a single impurity spin coupled to the double dot. The detection and tunability of this coupling are important for quantum manipulation in carbon nanotubes.  相似文献   

10.
Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with mono-vacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed.  相似文献   

11.
陈明君  梁迎春  李洪珠  李旦 《中国物理》2006,15(11):2676-2681
In this paper torsional deformation of the carbon nanotubes is simulated by molecular dynamics method. The Brenner potential is used to set up thesimulation system. Simulation results show that the carbon nanotubes can bear larger torsional deformation, for the armchair type (10,10) single wall carbon nanotubes, with a yielding phenomenon taking place when the torsional angle is up to 63$^{\circ}$(1.1rad). The influence of carbon nanotube helicity in torsional deformation is very small. The shear modulus of single wall carbon nanotubes should be several hundred GPa, not 1\,GPa as others reports.  相似文献   

12.
本文采用密度泛函理论的第一性原理方法,对手性指数m=n=K(K为3~15的整数)的扶手型硅纳米管的能带结构和态密度进行了研究。计算结果表明,扶手型(3,3)硅纳米管为间接带隙结构,其余均为直接带隙结构;随着手性指数的增加,硅纳米管的直径增大,硅纳米管的禁带宽度逐渐减小,且导带逐渐下移,总态密度图峰值强度增大;扶手型(3,3)硅纳米管的禁带宽度最大;扶手型(13,13)硅纳米管的禁带宽度最小,说明其导电性优于其他手性指数的扶手椅型硅纳米管;同时,扶手型(4,4)硅纳米管的导带和价带出现重叠,说明扶手型(4,4)硅纳米管为金属性纳米管;态密度图表明扶手型(9,9)硅纳米管的价带顶主要由Si-3p电子态构成,导带底由Si-3p态电子和Si-3s态电子共同构成。  相似文献   

13.
Large-scale molecular dynamic simulations of the axial deformations in single-walled carbon nanotubes have been performed using an O(N) tight-binding method. Our simulations indicate that under large strain, 0 K stress is remarkably sensitive to helicity, and that a zigzag nanotube and an armchair nanotube are the stiffest, respectively, under elongation and compression regimes. Furthermore, the elastic properties of a graphite sheet have been investigated using a simple harmonic potential and an analytic bond-order potential. The results suggest that the unique elastic properties of carbon nanotubes originate from those of a six-membered ring.  相似文献   

14.
We study the spin-dependent tunneling time, including group delay and dwell time, in a graphene based asymmetrical barrier with Rashba spin–orbit interaction in the presence of strain, sandwiched between two normal leads. We find that the spin-dependent tunneling time can be efficiently tuned by the barrier width, and the bias voltage. Moreover, for the zigzag direction strain although the oscillation period of the dwell time does not change, the oscillation amplitude increases by increasing the incident electron angle. It is found that for the armchair direction strain unlike the zigzag direction the group delay time at the normal incidence depends on the spin state of electrons and Hartman effect can be observed. In addition, for the armchair direction strain the spin polarization increases with increasing the RSOI strength and the bias voltage. The magnitude and sign of spin polarization can be manipulated by strain. In particular, by applying an external electric field the efficiency of the spin polarization is improved significantly in strained graphene, and a fully spin-polarized current is generated.  相似文献   

15.
We report optical properties of the smallest single-walled carbon nanotubes (SWNTs) with a diameter of only 3 A. These ultrasmall SWNTs are fabricated in the elliptical nanochannels of an AlPO-11 (AEL) single crystal. Polarized and resonant Raman scattering unambiguously revealed that these 0.3 nm SWNTs are of (2,2) armchair symmetry. Interestingly, the (2,2) armchair tube has two metastable ground states corresponding to two slightly different lattice constants in the axial direction: one state is metallic and the other is semiconducting.  相似文献   

16.
We investigate radio-frequency (rf) reflectometry in a tunable carbon nanotube double quantum dot coupled to a resonant circuit. By measuring the in-phase and quadrature components of the reflected rf signal, we are able to determine the complex admittance of the double quantum dot as a function of the energies of the single-electron states. The measurements are found to be in good agreement with a theoretical model of the device in the incoherent limit. In addition to being of fundamental interest, our results present an important step forward towards noninvasive charge and spin state readout in carbon nanotube quantum dots.  相似文献   

17.
We study a one-dimensional atomic lattice gas in which Rydberg atoms are excited by a laser and whose external dynamics is frozen. We identify a parameter regime in which the Hamiltonian is well approximated by a spin Hamiltonian with quasilocal many-body interactions which possesses an exact analytic ground state solution. This state is a superposition of all states of the system that are compatible with an interaction induced constraint weighted by a fugacity. We perform a detailed analysis of this state which exhibits a crossover between a paramagnetic phase with short-ranged correlations and a crystal. This study also leads us to a class of spin models with many-body interactions that permit an analytic ground state solution.  相似文献   

18.
A three-electron quantum dot under an external magnetic field was studied. A number of phase diagrams have been obtained to demonstrate how the variation of the magnetic field and/or the parameters of confinement would lead to the occurrence of doublet–quadruplet transitions. Both the confinement with parabolic potential and the square well potential have been considered. We show that the parameters of confinement alter the ground state of the quantum dot from a spin doublet to a spin quadruplet. This result indicates that the quantum dot can be used as a good candidate for qubit of a quantum computer.  相似文献   

19.
Frank J. Owens 《Molecular physics》2013,111(21-23):2441-2443
The electronic properties, band gap and ionization potential as well as the energies of the singlet and triplet states of zigzag and armchair graphene nanoribbons are calculated as a function of the number of oxygen atoms on the ribbon employing density functional theory at B3LYP/6-31G* level. The calculated band gaps indicate that both structures are semiconducting. The band gap of the armchair ribbons initially decreases followed by an increase with oxygen number. For zigzag ribbons the band gap decreases with increasing oxygen number whereas the ionization potential increases with oxygen content. In both armchair and zigzag ribbons the ionization potential shows a gradual increase with the number of oxygen atoms. Some of the oxygenated ribbons calculated have triplet ground states and have the density of states at the Fermi level for spin down greater than spin up suggesting the possibility they may be ferromagnetic semiconductors.  相似文献   

20.
We have investigated model schematics for a long fine single-wall carbon nanotube growth inside a larger diameter nanotube. Our proposed schematics are as follows: fullerenes are encapsulated into the nano-channel connected with fullerene storage tank; and then a inner nanotube grows via fullerene coalescence under 1200 °C in the nano-channel. Then the grown carbon nanotube is extracted from the nano-channel by mechanical control. We have investigated fullerene mergence inside single-wall carbon nanotube using classical molecular dynamics simulations based on the Tersoff–Brenner potential and the Lennard–Jones potential. During fullerene-encapsulating, since the fullerenes naturally have the kinetic energies due to the suction force and can be also accelerated by external force fields to improve the fullerene encapsulation rate, they can be migrated toward the other side of the nano-channel with kinetic energies. Our molecular dynamics simulations showed that the structural relaxation of dynamically free atoms affected on the growth of inner carbon nanotube rather than the Stone-Wales transformations. Since the broken bonds make the structural relaxation during merging to be easily achieved from the migration of carbon atoms or carbon chains, the inner nanotube grows via the re-bonding-reactions of dynamically free carbon atoms or chains as well as the Stone-Wales transformations. We could conclude that the growth rate of the inner CNT could be increased when bond-breakings between carbon atoms of fullerenes were easily achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号