首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For pure 4He on Cs a nonwet phase exists below ≈2 K but for dilute 3He–4He mixtures the wetting is reentrant. Measurements of the contact angle with dilute mixtures of liquid helium on Cs can be explained in detail in terms of 3He states together with ripplons at the Cs–He mixture interface, but it is impossible to account for the lower wetting temperatures or contact angles with only 3He states or ripplons. We discuss the influence of surface roughness of the Cs on the contribution of interface excitations to the free energy and suggest that the variety of contact angles found with different samples of Cs is due mainly to their degree of roughness.  相似文献   

2.
We obtain some results on symmetries of sub-Riemannian surfaces. In case of a contact sub-Riemannian surface we base on invariants found by Hughen [15]. Using these invariants, we find conditions under which a sub-Riemannian surface does not admit symmetries. If a surface admits symmetries, we show how invariants help to find them. It is worth noting, that the obtained conditions can be explicitly checked for a given contact sub-Riemannian surface. Also, we consider sub-Riemannian surfaces which are not contact and find their invariants along the surface where the distribution fails to be contact.  相似文献   

3.
We present results of Molecular Dynamics (MD) calculations on the behavior of liquid nanodroplets on rough hydrophobic and hydrophilic solid surfaces. On hydrophobic surfaces, the contact angle for nanodroplets depends strongly on the root-mean-square roughness amplitude, but it is nearly independent of the fractal dimension of the surface. Since increasing the fractal dimension increases the short-wavelength roughness, while the long-wavelength roughness is almost unchanged, we conclude that for hydrophobic interactions the short-wavelength (atomistic) roughness is not very important. We show that the nanodroplet is in a Cassie-like state. For rough hydrophobic surfaces, there is no contact angle hysteresis due to strong thermal fluctuations, which occur at the liquid-solid interface on the nanoscale. On hydrophilic surfaces, however, there is strong contact angle hysteresis due to higher energy barrier. These findings may be very important for the development of artificially biomimetic superhydrophobic surfaces.  相似文献   

4.
Excitation and emission spectra of the 4s21S0 – 4s4p1P1 and 4s4p3PJ(J = 0, 1, 2) – 4s5s3S1 transitions of Ca atoms implanted not only in liquid 4He but also in liquid 3He have been measured. It has been found that the excitation spectra for liquid 3He show considerably smaller widths and peak shifts from transition wavelengths of a free Ca atom, in comparison with those for liquid 4He. These spectral characteristics have been well reproduced by our theoretical calculation based on a vibrating bubble model. This calculation has shown that, due to a significant difference in surface tension between the two liquids, the radius of a bubble formed around Ca in liquid 3He is larger than the one in 4He, and that this fact as well as the smaller number density of He atoms in liquid 3He cause weaker perturbation for Ca, resulting in the smaller peak shift and width for liquid 3He.  相似文献   

5.
液滴在梯度微结构表面上的铺展动力学分析   总被引:1,自引:0,他引:1       下载免费PDF全文
林林  袁儒强  张欣欣  王晓东 《物理学报》2015,64(15):154705-154705
本文通过改变肋柱宽度和间距, 构造了二级和多级梯度微结构表面, 采用格子-Boltzmann方法对液滴在两种梯度表面上的铺展过程进行了研究, 探析液滴运动的机理和调控方法. 结果表明, 在改变肋柱间距的二级梯度表面上, 当液滴处于Cassie态时, 接触角滞后大小与粗糙度梯度成正比关系; 当液滴从Cassie态转换为Wenzel态或介于两者之间的不稳定态时, 这一正比关系不再遵循. 在改变肋柱宽度的二级梯度表面上, 接触角滞后大小与粗糙度梯度始终成正比关系. 在多级梯度表面上, 随液滴初始半径增大, 接触角滞后减小, 但液滴平衡位置相较于初始位置偏离增大. 对梯度微结构表面上液滴运动和接触角滞后的定量分析, 可为实现梯度微结构表面液滴运动调控提供理论依据.  相似文献   

6.
Epitaxially grown GaAs(001), (111) and (1?1?1?) surfaces and their behaviour on Cs adsorption are studied by LEED, AES and photoemission. Upon heat treatment the clean GaAs(001) surface shows all the structures of the As-stabilized to the Ga-stabilized surface. By careful annealing it is also possible to obtain the As-stabilized surface from the Ga-stabilized surface, which must be due to the diffusion of As from the bulk to the surface. The As-stabilized surface can be recovered from the Ga-stabilized surface by treating the surface at 400°C in an AsH3 atmosphere. The Cs coverage of all these surfaces is linear with the dosage and shows a sharp breakpoint at 5.3 × 1014 atoms cm?2. The photoemission reaches a maximum precisely at the dosage of this break point for the GaAs(001) and GaAs(1?1?1?) surface, whereas for the GaAs(111) surface the maximum in the photoemission is reached at a higher dosage of 6.5 × 1014 atoms cm?2. The maximum photoemission from all surfaces is in the order of 50μA Im?1 for white light (T = 2850 K). LEED measurements show that Cs adsorbs as an amorphous layer on these surfaces at room temperature. Heat treatment of the Cs-activated GaAs (001) surface shows a stability region of 4.7 × 1014 atoms cm?2 at 260dgC and one of 2.7 × 1014 atoms cm?2 at 340°C without any ordering of the Cs atoms. Heat treatment of the Cs-activated GaAs(111) crystal shows a gradual desorption of Cs up to a coverage of 1 × 1014 atoms cm?2, which is stable at 360°C and where LEED shows the formation of the GaAs(111) (√7 × √7)Cs structure. Heat treatment of the Cs-activated GaAs(1?1?1?) crystal shows a stability region at 260°C with a coverage of 3.8 × 1014 atoms cm?2 with ordering of the Cs atoms in a GaAs(1?1?1?) (4 × 4)Cs structure and at 340°C a further stability region with a coverage of 1 × 1014 at cm?2 with the formation of a GaAs(1?1?1?) (√21 × √21)Cs structure. Possible models of the GaAs(1?1?1?) (4 × 4)Cs, GaAs(1?1?1?)(√21 × √21)Cs and GaAs(111) (√7 × √7)Cs structures are given.  相似文献   

7.
An artificial fingerprint liquid is formulated from artificial sweat, hydroxyl-terminated polydimethylsiloxane and a solvent for direct determination of anti-fingerprint property of a coated surface. A range of smooth and rough surfaces with different anti-fingerprint (AF) properties were fabricated by sol-gel technology, on which the AF liquid contact angles, artificial fingerprint and real human fingerprints (HF) were verified and correlated. It is proved that a surface with AF contact angle above 87° is fingerprint free. This provides an objective and quantitative test method to determine anti-fingerprint property of coated surfaces. It is also concluded that AF property can be achieved on smooth and optically clear surfaces. Deep porous structures are more favorable than bumpy structure for oleophobic and AF properties.  相似文献   

8.
A new Monte Carlo method for calculating ground-state properties of liquid 4He is described. It is shown that Bose-Einstein condensation (BEC) implies delocalization of the wave function. It is shown that there is no general connection between the static structure factor and BEC. It is suggested that the observed connection in liquid 4He is due to the creation of spaces in the liquid structure, which are required so that the wave function can delocalize, in the presence of the hard-core interactions. It is shown that this suggestion is quantitatively consistent with observations on liquid 4He.  相似文献   

9.
We describe a measurement of the transmission probability of 4He atoms through a freely suspended slab of superfluid 4He at low temperatures. In our experiment the slab is realized by using an array of parallel cylindrical holes of diameter 51 microm in a glass disc of thickness 190 microm. By controlling the chemical potential, the holes can be made to fill or empty with liquid, and the surface curvature varied. We have measured the transmission of atom beams, generated by a thin-film heater and detected with a sensitive bolometer, through this structure. The results show that the dominant transmission channel is atom-R+ roton-atom with a probability p approximately 0.12 and that R+ rotons can undergo total internal reflection at the free liquid surfaces.  相似文献   

10.
We study the impact and subsequent retraction dynamics of aqueous liquid droplets upon high-speed impact on hydrophobic surfaces. Often a spectacular "rebound" of the droplet can be observed: after the impact and expansion, the drop retracts rapidly, leading to ejection of part of the material from the surface. We show how non-Newtonian flow properties can be used to slow down the retraction sufficiently to completely inhibit rebound. The slowing down is due to non-Newtonian normal stresses generated near the moving contact line of the droplet. We provide a quantitative theory for the slowing down, and show that the non-Newtonian effects profoundly change the contact line dynamics.  相似文献   

11.
A combination of low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) has been used to study the formation of the negative electron affinity (NEA) condition on surfaces of p-type, degenerate, (100) and (111) GaAs. Activation to NEA is achieved by adsorbing Cs and O onto atomically clean GaAs in repetitive cycles of first Cs and then O. Before activation, the clean GaAs surfaces exhibit their characteristic LEED patterns. However, once obtained, there is no significant correlation between the quality of these LEED patterns and the final activation. The adsorption of both Cs and O during activation to NEA is amorphous. Auger measurements have shown that the first photoemission maximum occurs after the adsorption of about a half monolayer of Cs. The initial O adsorption occurs on the GaAs surface between the Cs atoms. The adsorbed O interacts strongly with Cs at any stage during the activation. Peak photosensitivities, after completion of the Cs and O adsorptions, were in the range 400 to 1100 μAlumen. The final activation does not correlate with the quantity of Cs and O on the surface. The temperature dependence of the photosensitivity of NEA GaAs (100) activated at ?170°C has a broad maximum at about ?50°C and a subsidiary maximum at about 160°C. In addition, the photoemission at ?170°C can be either increased or decreased by having heated the sample up to 200°C, even though no Cs or O desorption has taken place. These results can be traced to changes in work function rather than to changes in bulk properties. While the LEED patterns from clean GaAs show no structural changes with temperature, such changes are observed when Cs is on the surface. It is suggested that changes both in photoemission and in LEED patterns are due to the temperature-induced mobility of Cs on GaAs. An atomic model for the NEA surface is discussed in terms of a layer of Cs and O atoms about 10 Å thick on the GaAs.  相似文献   

12.
液态镓在石墨烯表面的润湿性及形貌特征   总被引:1,自引:0,他引:1       下载免费PDF全文
王俊珺  李涛  李雄鹰  李辉 《物理学报》2018,67(14):149601-149601
液态Ga及其合金的熔点低、毒副作用小、导电率高,使得这类液态金属能像石墨烯一样被广泛应用于微流器件、柔性电子器件中,制备这些器件的关键在于有效控制各生产环节中液态金属在固体界面上的润湿性及形貌特征.基于Lennard-Jones(L-J)势函数,利用分子动力学模拟方法研究了金属Ga在石墨烯表面的润湿性,根据模拟结果拟合的L-J势参数能正确描述Ga原子与衬底之间的相互作用并得到了与实验值极为接近的润湿角,发现衬底与液膜间相互作用的微小改变都会对最终润湿形态产生极大影响,平衡态的润湿角和脱离衬底速度随着Ga-C间势能的减小而增大,并成功获得了不同厚度的Ga液膜在石墨烯表面的形态演变规律,极为符合液态Ga的基本特性.利用所得L-J势函数参数模拟了液态Ga在粗糙度相同但纳米柱尖端形貌不同的C材料表面的润湿演变,发现纳米柱尖端形貌对液态Ga的润湿过程及状态影响极大.  相似文献   

13.
Superhydrophobic surfaces, with a liquid contact angle theta greater than 150 degrees , have important practical applications ranging from self-cleaning window glasses, paints, and fabrics to low-friction surfaces. Many biological surfaces, such as the lotus leaf, have a hierarchically structured surface roughness which is optimized for superhydrophobicity through natural selection. Here we present a molecular dynamics study of liquid droplets in contact with self-affine fractal surfaces. Our results indicate that the contact angle for nanodroplets depends strongly on the root-mean-square surface roughness amplitude but is nearly independent of the fractal dimension D(f) of the surface.  相似文献   

14.
S. Cai 《哲学杂志》2013,93(35):5505-5522
Meniscus and viscous forces are sources of adhesive force when two surfaces are separated with a micro-meniscus present at the interface. The adhesive force can be one of the main reliability issues when the contacting surfaces are ultra-smooth and the normal load is small, as is common for micro/nano devices. In this paper, both meniscus and viscous forces of menisci with symmetric and asymmetric contact angles are modelled. Equations for both meniscus and viscous forces in division of menisci are analytically formulated. The role of these two forces is evaluated during the separation process. The effects of the contact angles, division of menisci, as well as liquid thicknesses, surface tension and viscosity of the liquid, and separation distance and time during separation are presented. It is found that contact angles significantly affect the break point and meniscus force, and the magnitude of meniscus force can be largely reduced by choosing proper asymmetric contact angles. ‘Force scaling’ effects are found to be true for both meniscus and viscous forces when one larger meniscus is divided into large numbers of identical micro-menisci. Meniscus force increases with the number of divisions whereas viscous force decreases by an order of inverse the number of division (1/N). Optimal configurations for low adhesion are identified. This study presents a comprehensive analysis of meniscus and viscous forces during separation of menisci under different physical configurations. It provides a fundamental understanding of the physics of the process and knowledge for control of adhesion due to liquid menisci.  相似文献   

15.
We study the quenched random disorder(QRD) effects created by aerosil dispersion in the octylcyanobiphenyl(8CB) liquid crystal(LC) using atomic force microscopy technique. Gelation process in the 8CB+aerosil gels yields a QRD network which also changes the surface topography. By increasing the aerosil concentration, the original smooth pattern of LC sample surfaces is suppressed by the emergence of a fractal aerosil surface effect and these surfaces become more porous, rougher and they have more and larger crevices. The dispersed aerosil also serves as pinning centers for the liquid crystal molecules. It is observed that via the diffusion-limitedaggregation process, aerosil nano-particles yield a fractal-like surface pattern for the less disordered samples. As the aerosil dispersion increases, the surface can be described by more aggregated regions, which also introduces more roughness. Using this fact, we show that there is a net correlation between the short-range ordered x-ray peak widths(the results of previous x-ray diffraction experiments) and the calculated surface roughness. In other words, we show that these QRD gels can also be characterized by their surface roughness values.  相似文献   

16.
Polyamide 6 (PA 6) films are treated with helium(He)/CF4 plasma at atmospheric pressure. The samples are treated at different treatment times. The surface modification of the PA 6 films is evaluated by water contact angle, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The etching rate is used to study the etching effect of He/CF4 plasma on the PA 6 films. The T-peel strengths of the control and plasma treated films are measured to show the surface adhesion properties of the films. As the treatment time increases, the etching rate decreases steadily, the contact angle decreases initially and then increases, while the T-peel strength increases first and then decreases. AFM analyses show that the surface roughness increases after the plasma treatment. XPS analyses reveal substantial incorporation of fluorine and/or oxygen atoms to the polymer chains on the film surfaces.  相似文献   

17.
We consider the problem of finding the energy spectrum of electrons localized above the surface of a liquid helium film under the electrostatic attraction of induced charges. We show that the forces of attraction to the charges induced on the surface of a conductor located beneath the film begin to additionally influence the forces of attraction of the electrons to the free liquid surface as the film thickness decreases. When the film thickness becomes less than 10μm, this influence causes a significant increase in the energy difference between the lower levels and a decrease in their depth. We suggest a numerical method for solving the problem and present the results of our calculations of the energy spectrum of electrons localized above the surfaces of liquid 3He, 4He, and neon films. The influence of the pressing electric field on the energy spectrum is considered.  相似文献   

18.
张辉  吴迪  张国英  肖明珠 《物理学报》2010,59(1):488-493
通过分子动力学方法模拟了Cu-Al合金液相,然后模拟降温过程得到Cu-Al非晶合金.通过计算机编程建立了Cu-Al-M非晶基体、Cu-Al-M非晶表面及吸附O原子Cu-Al-M非晶表面原子结构模型.利用实空间连分数方法,研究了添加微量合金元素Zr,Nb,Ta,V,Y,Sc对Cu基大块非晶合金的腐蚀行为的影响机理.研究发现合金元素Zr,Nb,Ta,V,Sc不向清洁Cu基非晶表面偏聚,但除Y外向有氧吸附的表面偏聚,说明有氧吸附后Cu基非晶表面偏聚发生逆转.键级积分计算表明Zr,Nb,Ta,V,Y,Sc元素均增大与氧之间的结合力,易形成氧化膜,提高Cu基大块非晶的耐蚀性.稀土Y提高Cu基大块非晶的耐蚀性可能是由于它向合金与氧化膜界面偏聚并提高了合金与氧化膜的结合力.  相似文献   

19.
The results of diffusion Monte Carlo calculations on the behavior of 4He adsorbed on the external surface of a bundle of carbon nanotubes are presented. The corrugation effects are found to be very important, making the outside part of the bundles a quite inhomogeneous substrate. No stable solid helium monolayer at high density was found. Instead, helium atoms are promoted to a second quasi-one-dimensional phase on top of the liquid first layer. On increasing the helium intake, a two layer structure is formed in which the helium directly in contact with the carbon surface solidifies.  相似文献   

20.
纳米粒子构建表面的超疏水性能实验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
采用疏水纳米粉体压片法和岩心吸附法构建了具有微纳米结构的表面,测试了这些表面的接触角,拍摄了水滴在吸附纳米粒子的岩石表面的滚动过程照片,采用扫描电子显微镜(scanning electron microscope,SEM)检测了表面的微结构.实验结果表明:无机纳米粒子经弱疏水性材料修饰后,其表面润湿性由强亲水变为强疏水;疏水纳米粒子吸附表面的接触角均大于120°,滚动角约7°,显示出超疏水特性;SEM照片显示,这些超疏水表面是具有不规则微纳米结构的气固复合面,符合Cassie-Baxter的复合表面模型. 关键词: 超疏水 纳米粒子 微纳米结构表面 接触角  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号