首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Fluctuations of expectation values of observables are calculated in complex quantum systems, such as disordered metallic grains or quantum systems with classical chaotic motion. We derive an exact expression for these fluctuations valid for systems with and without time-reversal symmetry, as well as in the transition region between these two cases. We compare our results with those of a semiclassical theory and with simulations of random matrices.  相似文献   

3.
We show that classical chaotic scattering has experimentally measurable consequences for the quantum conductance of semiconductor microstructures. These include the existence of conductance fluctuations-a sensitivity of the conductance to either Fermi energy or magnetic field-and weak-localization-a change in the average conductance upon applying a magnetic field. We develop a semiclassical theory and present numerical results for these two effects in which we model the microstructures by billiards attached to leads. We find that the difference between chaotic and regular classical scattering produces a qualitative difference in the fluctuation spectrum and weak-localization lineshape of chaotic and nonchaotic structures. While the semiclassical theory within the diagonal approximation accounts well for the weak-localization lineshape and for the spectrum of the fluctuations, we uncover a surprising failure of the semiclassical diagonal-approximation theory in describing the magnitude of these quantum transport effects.  相似文献   

4.
We present a semiclassical theory for the scattering matrix S of a chaotic ballistic cavity at finite Ehrenfest time. Using a phase-space representation coupled with a multibounce expansion, we show how the Liouville conservation of phase-space volume decomposes S as S=S(cl) plus sign in circle S(qm). The short-time, classical contribution S(cl) generates deterministic transmission eigenvalues T=0 or 1, while quantum ergodicity is recovered within the subspace corresponding to the long-time, stochastic contribution S(qm). This provides a microscopic foundation for the two-phase fluid model, in which the cavity acts like a classical and a quantum cavity in parallel, and explains recent numerical data showing the breakdown of universality in quantum chaotic transport in the deep semiclassical limit. We show that the Fano factor of the shot-noise power vanishes in this limit, while weak localization remains universal.  相似文献   

5.
It was recently conjectured that 1/f noise is a fundamental characteristic of spectral fluctuations in chaotic quantum systems. This conjecture is based on the power spectrum behavior of the excitation energy fluctuations, which is different for chaotic and integrable systems. Using random matrix theory, we derive theoretical expressions that explain without free parameters the universal behavior of the excitation energy fluctuations power spectrum. The theory gives excellent agreement with numerical calculations and reproduces to a good approximation the 1/f (1/f(2)) power law characteristic of chaotic (integrable) systems. Moreover, the theoretical results are valid for semiclassical systems as well.  相似文献   

6.
We present a semiclassical approach to eigenfunction statistics in chaotic and weakly disordered quantum systems which goes beyond random matrix theory, supersymmetry techniques, and existing semiclassical methods. The approach is based on a generalization of Berry's random wave model, combined with a consistent semiclassical representation of spatial two-point correlations. We derive closed expressions for arbitrary wave-function averages in terms of universal coefficients and sums over classical paths, which contain, besides the supersymmetry results, novel oscillatory contributions. Their physical relevance is demonstrated in the context of Coulomb blockade physics.  相似文献   

7.
We show, using semiclassical methods, that as a symmetry is broken, the transition between universality classes for the spectral correlations of quantum chaotic systems is governed by the same parametrization as in the theory of random matrices. The theory is quantitatively verified for the kicked rotor quantum map. We also provide an explicit substantiation of the random matrix hypothesis, namely that in the symmetry-adapted basis the symmetry-violating operator is random.  相似文献   

8.
We show that the semiclassical approach to chaotic quantum transport in the presence of time-reversal symmetry can be described by a matrix model. In other words, we construct a matrix integral whose perturbative expansion satisfies the semiclassical diagrammatic rules for the calculation of transport statistics. One of the virtues of this approach is that it leads very naturally to the semiclassical derivation of universal predictions from random matrix theory.  相似文献   

9.
We develop a percolation model for nodal domains in the eigenvectors of quantum chaotic torus maps. Our model follows directly from the assumption that the quantum maps are described by random matrix theory. Its accuracy in predicting statistical properties of the nodal domains is demonstrated for perturbed cat maps and supports the use of percolation theory to describe the wave functions of general Hamiltonian systems. We also demonstrate that the nodal domains of the perturbed cat maps obey the Cardy crossing formula and find evidence that the boundaries of the nodal domains are described by stochastic Loewner evolution with diffusion constant close to the expected value of 6, suggesting that quantum chaotic wave functions may exhibit conformal invariance in the semiclassical limit.  相似文献   

10.
We examine the density of states of an Andreev billiard and show that any billiard with a finite upper cutoff in the path length distribution P(s) will possess an energy gap on the scale of the Thouless energy. An exact quantum mechanical calculation for different Andreev billiards gives good agreement with the semiclassical predictions when the energy dependent phase shift for Andreev reflections is properly taken into account. Based on this new semiclassical Bohr-Sommerfeld approximation of the density of states, we derive a simple formula for the energy gap. We show that the energy gap, in units of Thouless energy, may exceed the value predicted earlier from random matrix theory for chaotic billiards.  相似文献   

11.
The theory of forward glory scattering is investigated for a state-to-state chemical reaction whose scattering amplitude can be written as a Legendre partial wave series. Legendre series occur in the exact quantum theory of reactive scattering when the initial and final helicity quantum numbers are zero, as well as in many approximate theories of chemical reactions. The starting point for the semiclassical theory is a two-dimensional integral representation for the scattering amplitude. A uniform semiclassical approximation is derived that is valid for angles both on, and off, the axial caustic associated with the glory. The derivation is the first application to a concrete problem in molecular physics of a method outlined by J. N. L. Connor and H. R. Mayne in 1979 for the uniform semiclassical evaluation of multidimensional integrals. The approach exploits the theory of singularities of differential mappings. The key step in the derivation is an exact one-to-one change of variables in the neighbourhood of the stationary phase points that locally reduce the two-dimensional phase of the integrand to a non-polynomial canonical form. The derivation complements a different semiclassical glory analysis reported in a companion paper.  相似文献   

12.
We show that particle transport, as characterized by the equilibrium mean square displacement, in a uniform, quantum multibaker map, is generically ballistic in the long time limit, for any fixed value of Planck's constant. However, for fixed times, the semiclassical limit leads to diffusion. Random matrix theory provides explicit analytical predictions for the mean square displacement of a particle in the system. These results exhibit a crossover from diffusive to ballistic motion, with crossover time on the order of the inverse of Planck's constant. We expect that, for a large class of 1D quantum random walks similar to the quantum multibaker, a sufficient condition for diffusion in the semiclassical limit is classically chaotic dynamics in each cell. The systems described generalize known quantum random walks and may have applications for quantum computation.  相似文献   

13.
We review recent experiments on aperiodic conductance fluctuations in ballistic GaAs/AlGaAs microstructures in the shape of a stadium billiard and a circle with point-contact leads, measured at millikelvin temperatures. Much of the observed behavior can be analyzed within a semiclassical approach to quantum chaotic scattering. After a brief review of the Landauer-Buttiker formulation of coherent transport, a variety of novel experimental phenomena and comparisons to semiclassical theory are presented. In particular, we discuss quantum-enhanced backscattering, the power spectrum of conductance fluctuations, crossover to the high-magnetic-field and tunneling regimes, and an application allowing the rate of phase-randomizing scattering to be measured in chaotic ballistic microstructures.  相似文献   

14.
15.
We analyze a simple model of quantum chaotic scattering system, namely the quantized open baker’s map. This model provides a numerical confirmation of the fractal Weyl law for the semiclassical density of quantum resonances. The fractal exponent is related to the dimension of the classical repeller. We also consider a variant of this model, for which the full resonance spectrum can be rigorously computed, and satisfies the fractal Weyl law. For that model, we also compute the shot noise of the conductance through the system, and obtain a value close to the prediction of random matrix theory.  相似文献   

16.
We develop a semiclassical theory for spin-dependent quantum transport to describe weak (anti)localization in quantum dots with spin-orbit coupling. This allows us to distinguish different types of spin relaxation in systems with chaotic, regular, and diffusive orbital classical dynamics. We find, in particular, that for typical Rashba spin-orbit coupling strengths, integrable ballistic systems can exhibit weak localization, while corresponding chaotic systems show weak antilocalization. We further calculate the magnetoconductance and analyze how the weak antilocalization is suppressed with decreasing quantum dot size and increasing additional in-plane magnetic field.  相似文献   

17.
18.
We present a refined semiclassical approach to the Landauer conductance and Kubo conductivity of clean chaotic mesoscopic systems. We demonstrate for systems with uniformly hyperbolic dynamics that including off-diagonal contributions to double sums over classical paths gives a weak-localization correction in quantitative agreement with results from random matrix theory. We further discuss the magnetic-field dependence. This semiclassical treatment accounts for current conservation.  相似文献   

19.
In the periodic orbit quantization of physical systems, usually only the leading-order ? contribution to the density of states is considered. Therefore, by construction, the eigenvalues following from semiclassical trace formulae generally agree with the exact quantum ones only to lowest order of ?. In different theoretical work the trace formulae have been extended to higher orders of ?. The problem remains, however, how to actually calculate eigenvalues from the extended trace formulae since, even with ? corrections included, the periodic orbit sums still do not converge in the physical domain. For lowest-order semiclassical trace formulae the convergence problem can be elegantly, and universally, circumvented by application of the technique of harmonic inversion. In this paper we show how, for general scaling chaotic systems, also higher-order ? corrections to the Gutzwiller formula can be included in the harmonic inversion scheme, and demonstrate that corrected semiclassical eigenvalues can be calculated despite the convergence problem. The method is applied to the open three-disk scattering system, as a prototype of a chaotic system. Received 10 September 2001 and Received in final form 3 January 2002  相似文献   

20.
We construct a trajectory-based semiclassical theory of shot noise in clean chaotic cavities. In the universal regime of vanishing Ehrenfest time tau(E), we reproduce the random matrix theory result and show that the Fano factor is exponentially suppressed as tau(E) increases. We demonstrate how our theory preserves the unitarity of the scattering matrix even in the regime of finite tau(E). We discuss the range of validity of our semiclassical approach and point out subtleties relevant to the recent semiclassical treatment of shot noise in the universal regime by Braun et al. (cond-mat/0511292).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号