首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near-edge X-ray absorption fine-structure (NEXAFS) spectroscopy was used to measure simultaneously the relaxation rates of polystyrene (PS) molecules at the free surface and in the bulk. The samples were uniaxially stretched and annealed at temperatures below the bulk glass transition temperature of PS. The surface and bulk chain relaxation was monitored by measuring the partial-electron and the fluorescence NEXAFS yields, respectively, both parallel and perpendicular to the stretching direction. The decay of the optical birefringence was also measured to provide an independent measure of the bulk relaxation. Relaxation of PS chains was found to occur faster on the surface relative to the bulk. The magnitude of the surface glass transition temperature suppression over the bulk was estimated based on the information on the temperature dependence of the rates.Received: 1 January 2003, Published online: 14 October 2003PACS: 68.35.Ja Surface and interface dynamics and vibrations - 68.47.Mn Polymer surfaces  相似文献   

2.
The segmental dynamics of PVME within the single-phase state of poly(styrene)/poly(vinyl methyl ether) blends (PS/PVME) was examined by dielectric spectroscopy. A particular attention has been given to the high PS concentration regime. In this latter, rather localized, weakly cooperative motions of the PVME segments are detected at low temperatures, in addition of the secondary relaxation processes. This feature is attributed to confinement effects induced by the PS chains on the PVME.  相似文献   

3.
Using the method of quasielastic coherent neutron scattering by liquid lithium, the temperature dependence of self-diffusion coefficient is investigated and compared with analogous data extracted by the incoherent scattering method.  相似文献   

4.
Scattering functions and full widths at half maximum for quasielastic neutron scattering (QENS) are calculated for diffusion in systems of one-dimensional channels. The self-correlation function for diffusion in isotropically oriented channels is given and it is found that this function diverges at the origin. The calculations are carried out for both normal and single-file diffusion and the influence of the ballistic phase is investigated. It is found that the ballistic phase influences the scattering functions very strongly for large diffusion coefficients. QENS data from the literature are analyzed with respect to this influence. The influence of three different resolution functions (triangular, Gaussian, and Lorentzian) is considered.  相似文献   

5.
Neutron scattering studies in (KBr)1–x(KCN)x mixed crystals are presented utilizing powder diffraction, single crystal diffraction and time-of-flight techniques. Forx>0.6 (KBr)1–x(KCN)x crystals exhibit ferroelastic and ferroelectric low-temperature phases. Crystals withx<0.6 undergo transitions into an orientational glass state. Here we present a detailed phase diagram including new results for x=0.85 and x=0.65. For the latter system a stable rhombohedral low-temperature phase has been detected where the orientational disorder of the plastic phase is only partly removed and quadrupolar relaxations between three body diagonals are still possible. From the powder diffraction experiments we determined further the concentration dependence of the static Debye-Waller factors which can be explained by an interplay of the rotation-translation and the rotation-random strain coupling. With single crystal diffraction techniques we studied the diffuse scattered intensities which are directly related to the order parameter of the glass state. The temperature dependence of the quasielastic intensities near the critical concentration shows a strong increase forT<110K indicative for a freezing-in of shear fluctuations which is a characteristic feature of a non-ergodic instability. This phenomenon appears for ordering (x=0.65) and for non-ordering, glassy compounds. A further anomaly in (KBr)0.43(KCN)0.57 at 75 K is interpreted in terms of a residual elastic ordering process. With high-resolution time-of-flight techniques we analysed the dynamic structure factor for x=0.57. We demonstrate that the central peak consists of a static and a dynamic component. The results are compared with mode coupling theories which describe the glass transition in supercooled liquids.  相似文献   

6.
7.
Using pulsed neutrons of 19.8 Å wavelength a quasielastic line broadening as low as 0.03 eV (FWHM) has been observed due to Na+ diffusion in the glass Na2O·2SiO2. From the linewidths a Na+ self-diffusion coefficient of 3.1·10–8 cm2/s at 420°C was obtained in excellent agreement with the diffusion coefficient determined for the same sample batch using22Na radioactive tracers. The experimental Q dependence of the quasielasic linewidths gives a hint for deviations from a purely random walk in an ionic glass.  相似文献   

8.
Quasielastic neutron scattering (QENS) has been applied to study the sodium mobility on nanosecond time scales in the perovskite fluoride cryolite, Na3AlF6, at high temperatures. Up to T = 1153 K the diffusion of Na ions is well described by a diffusion process of jumps between six and eight-fold coordinated sites. Above this temperature, where a step-like increase in the electrical conductivity occurs, the jump length increases, which indicates additional jumps over larger distances. The electrical conductivity derived from the self-diffusion coefficient via the Nernst–Einstein relation and the corresponding activation energy are in excellent agreement with the previous conductivity measurements. We conclude that the jump diffusion of sodium ions is the dominant mechanism for the electrical conductivity in cryolite at high temperatures up to T = 1153 K.  相似文献   

9.
10.
11.
The diffusive motion of silver ions in σ-AgI at 250°C has been studied by quasielastic cold neutron scattering. Spectra were taken in the range of wavevector transfer 0.5 < Q < 2.2Å?1 for elastic scattering. The quasielastic line shapes contain a narrow and a broad component. They are compared to model calculations allowing for the superposition of two kinds of motion on two different time scales, a local random motion and a translational motion of the jump-diffusion type. The model closely fits the data. The local random motion takes place on a time scale of the order of 10?12 s, with amplitudes of the order of 1 Å. It is probably caused by rapid fluctuations of the local potentials due to the diffusive motion of the other cations. The translational motion results in a mean displacement of the silver ion over a distance of the order of a lattice constant (5 Å) with a correlation time of the order of 10?11s. This correlation time is composed of a residence time and a time-of-flight, which are both of comparable magnitude.  相似文献   

12.
The state of intermolecular aggregates and that of folded gelatin molecules could be characterized by dynamic laser light and small-angle neutron scattering experiments, which implied spontaneous segregation of particle sizes preceding coacervation, which is a liquid-liquid phase transition phenomenon. Dynamic light scattering (DLS) data analysis revealed two particle sizes until precipitation was reached. The smaller particles having a diameter of ~50 nm (stable nanoparticles prepared by coacervation method) were detected in the supernatant, whereas the inter-molecular aggregates having a diameter of ~400 nm gave rise to coacervation. Small-angle neutron scattering (SANS) experiments revealed that typical mesh size of the networks exist in polymer dense phase (coacervates) [1]. Analysis of the SANS structure factor showed the presence of two length scales associated with this system that were identified as the correlation length or mesh size, ξ = 10.6 Å of the network and the other is the size of inhomogeneities = 21.4 Å. Observations were discussed based on the results obtained from SANS experiments performed in 5% (w/v) gelatin solution at 60°C (ξ = 50 Å, ζ = 113 Å) and 5% (w/v) gel at 28°C (ξ = 47 Å, ζ = 115 Å) in aqueous phase [2] indicating smaller length scales in coacervate as compared to sol and gel.  相似文献   

13.
We report inelastic neutron scattering measurements on polystyrene thin films in a glassy state in the meV region. We found in elastic scattering that the mean square displacement decreased with film thickness, and hence the corresponding force constant f increased. In inelastic and quasielastic scattering, we observed the so-called boson peak at around 1.5 meV and the picosecond fast process for the first time in thin films, both of which decreased in intensity with film thickness. These results were discussed in terms of the potential hardening due to the confinement of polymer chains and/or the interfacial dead layer.  相似文献   

14.
The integrated intensity of quasielastic neutron scattering by protons in polycrystalline NbH0.16 and in a single crystal of NbH0.045 was investigated as a function of the scattering vector Q. Strong deviations from a harmonic Debye-Waller factor behavior were observed at elevated temperatures. The results show a temperature dependent delocalization of the proton extending as far as the neighboring sites of the interstitial lattice. Experiments on the single crystal indicate a directional dependent mean-square amplitude of the proton even at room temperature.  相似文献   

15.
The quasielastic neutron scattering experiments on liquid sodium (at T = 378, 573, and 693 K) and sodiumhydrogen melt (T = 693 K, hydrogen concentration ~ 0.4 at %) were performed with the DIN-2PI time-of-flight spectrometer. The characteristics of the diffusion mobility for particles comprising the liquids studied are extracted from the experimental results and analyzed with the help of the phenomenological and “relaxing cage” models. The self-diffusion coefficient in liquid sodium obtained for all temperatures is in the agreement with the values known from literature. The diffusion mobility in pure sodium and in sodium-hydrogen melt were found to be coinciding; it leads to the conclusion that in our experimental conditions hydrogen exists and diffuses in melt in the form of hydride NaH.  相似文献   

16.
We propose a high resolution neutron spectrometer, which combines the spin-echo principle with the separated coil magnetic resonance technique. The introduction of magnetic resonance instead of static spin-flippers in the spin-echo spectrometer allows the replacement of its high magnetic fields by low guide fields. The new technique represents a generalisation of the conventional spin-echo spectrometer.This property also holds for the double statistical-[8] the double Fourier- [9] and the Fotof-spectrometer [10], but those have not been built to our knowledge  相似文献   

17.
The vibrational spectrum of hydrogen and the parameters of H jump motion in the rhombohedral Th(2)Zn(17)-type compound Ce(2)Fe(17)H(5) have been studied by means of inelastic and quasielastic neutron scattering. It is found that hydrogen atoms occupying interstitial Ce(2)Fe(2) sites participate in the fast localized jump motion over the hexagons formed by these tetrahedral sites. The H jump rate τ(-1) of this localized motion is found to change from 3.9 × 10(9) s(-1) at T = 140 K to 4.9 × 10(11) s(-1) at T = 350 K, and the temperature dependence of τ(-1) in the range 140-350 K is well described by the Arrhenius law with the activation energy of 103±3 meV. Our results suggest that the hydrogen jump rate in Th(2)Zn(17)-type compounds strongly increases with decreasing nearest-neighbor distance between the tetrahedral sites within the hexagons. Since each such hexagon in Ce(2)Fe(17)H(5) is populated by two hydrogen atoms, the jump motions of H atoms on the same hexagon should be correlated.  相似文献   

18.
A quasielastic neutron scattering study of Ni2Mo6S8 has established relatively fast long-range motion of the intercalated Ni2+ ions, with a diffusion constantD=3×10–9 cm2 s–1. A model with a jump distance of about 2.1 Å and an activation energy of 24 kJ/mol is favoured. A critical consideration of the information contained in fixed window measurements is given.  相似文献   

19.
This work is devoted to a small-angle polarized neutron scattering study of the structure and magnetic properties of nickel inverted photonic crystals. Depending on the intensity of the small-angle scattering, diffraction maximums up to fourth-order reflections, which correspond to scattering from the highly ordered structures of the test samples, are observed. Several contributions to the scattering are analyzed: a nuclear contribution; a magnetic contribution; a contribution depending on an external magnetic field; and a nuclear magnetic interference, which shows a correlation between magnetic and nuclear structures. It is found that a magnetization reversal process, which was represented by a standard hysteresis curve, for weak fields was accompanied by both domain formation and coherent magnetization rotation from the field direction to directions caused by geometric structure peculiarities.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号