首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report (17)O NMR measurements in the S=1/2 (Cu(2+)) kagome antiferromagnet Herbertsmithite ZnCu(3)(OH)(6)Cl(2) down to 45 mK in magnetic fields ranging from 2 to 12 T. While Herbertsmithite displays a gapless spin-liquid behavior in zero field, we uncover an instability toward a spin-solid phase at sub-Kelvin temperature induced by an applied magnetic field. The latter phase shows largely suppressed moments ?0.1 μ(B) and gapped excitations. The H-T phase diagram suggests the existence of a quantum critical point at the small but finite magnetic field μ(0)H(c)=1.55(25) T. We discuss this finding in light of the perturbative Dzyaloshinskii-Moriya interaction which was theoretically proposed to sustain a quantum critical regime for the quantum kagome Heisenberg antiferromagnet model.  相似文献   

2.
High-field specific heat measurements on BaCo(2)V(2)O(8), which is a good realization of an S=1/2 quasi-one-dimensional (1D) Ising-like antifferomagnet, have been performed in magnetic fields up to 12 T along the chain and at temperature down to 200 mK. We have found a new magnetic ordered state in the field-induced phase above H(c) approximately 3.9 T. We suggest that a novel type of the incommensurate order, which is caused by the quantum effect inherent in the S=1/2 quasi-1D Ising-like antiferromagnet, appears in the field-induced phase.  相似文献   

3.
Gels consist of crosslinked polymer network swollen in solvent. The network of flexible long-chain molecules traps the liquid medium they are immersed in. Some gels undergo abrupt volume change, a phase transition process, by swelling-shrinking in response to external stimuli changes in solvent composition, temperature, pH, electric field, etc. We report that during volume phase transition changes of NMR longitudinal relaxation time T(1), NMR transverse relaxation time T(2), and diffusion coefficient D of the PMMA gel, and D of the NIPA gel. We describe how the gels were synthesized and the reason of using the snapshot FLASH imaging sequence to measure T(1), T(2), and D. Since T(1), T(2) and D maps have identical field of view and data are extracted from identical areas from their respective maps, these values can be correlated quantitatively on a pixel-by-pixel basis. Thus a complete set of NMR parameters is measured in-situ: the gels are in their natural state, immersed in the liquid, during the phase transition. The results of spectroscopic method agree with that of snapshot FLASH imaging method. For the PMMA gel T(1), T(2) and D decrease when gels undergo volume phase transition between deuterated acetone concentration of 30% and 40%. At its contracted state, T(1) is reduced to a little less than one order of magnitude, T(2) over two orders of magnitude, and D over one order of magnitude, smaller from values of PMMA gel at the swollen state. At an elevated temperature of 54 degrees C the thermosensitive NIPA gel is at a contracted state, with its D reduced to almost one order of magnitude smaller from that of the swollen NIPA at room temperature.  相似文献   

4.
The HfO2-SiO2 system is attracting interest as a possible new dielectric material in semiconductor devices. Knowledge of the location of hafnium within the silica network and the effect hafnium has on the structure will be central to the successful use of this material system in this application. Here, sol-gel techniques have been used to manufacture (HfO2)x(SiO2)1-x samples (x=0.1, 0.2 and 0.4, each heat treated at 250, 500 and 750 degrees C) and these have been characterised by magic angle spinning (MAS) NMR (1H, 13C, 17 O, 29Si), Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis. 29Si MAS NMR showed that increasing the hafnia content decreases the connectivity of the silicate network, i.e. increases the range of differently connected SiO4 (Qn) units with more having increased numbers of non-bridging oxygens (i.e. lower n). FTIR and 17 O MAS NMR showed unequivocally that the x=0.4 sample phase-separated at higher temperatures, while in the x=0.1 sample the hafnium was homogeneously mixed into the SiO2 phase without any phase separation.  相似文献   

5.
ZnCu(3)(OH)(6)Cl(2) (S=1/2) is a promising new candidate for an ideal Kagome Heisenberg antiferromagnet, because there is no magnetic phase transition down to approximately 50 mK. We investigated its local magnetic and lattice environments with NMR techniques. We demonstrate that the intrinsic local spin susceptibility decreases toward T=0, but that slow freezing of the lattice near approximately 50 K, presumably associated with OH bonds, contributes to a large increase of local spin susceptibility and its distribution. Spin dynamics near T=0 obey a power-law behavior in high magnetic fields.  相似文献   

6.
Lou J  Xiang T  Su Z 《Physical review letters》2000,85(11):2380-2383
The magnetic susceptibility and specific heat of the one-dimensional S = 1 bilinear-biquadratic Heisenberg model are calculated using the transfer matrix renormalization group. By comparing the results with the experimental data of LiVGe2O6 measured by Millet et al. [Phys. Rev. Lett. 83, 4176 (1999)], we find that the susceptibility data of this material, after subtracting the impurity contribution, can be quantitatively explained with this model. The biquadratic exchange interaction in this material is found to be ferromagnetic, i.e., with a positive coupling constant.  相似文献   

7.
We report Cd nuclear magnetic resonance (NMR) and Re nuclear quadrupole resonance (NQR) studies on Cd(2)Re(2)O(7), the first superconductor among pyrochlore oxides (T(c) approximately 1 K). The Re NQR spectrum at zero magnetic field below 100 K rules out any magnetic or charge order. The spin-lattice relaxation rate below T(c) exhibits a pronounced coherence peak and follows the weak-coupling BCS theory with nearly isotropic energy gap. The results of Cd NMR point to a moderate ferromagnetic enhancement at high temperatures followed by a rapid decrease of the density of states below the structural transition temperature of 200 K.  相似文献   

8.
The oxygen isotope effect on the relaxation rate of crystal-field excitations in the slightly underdoped high-temperature superconductor HoBa2Cu4O8 has been investigated by means of inelastic neutron scattering. For the 16O compound there is clear evidence for the opening of an electronic gap in the normal state at T(*) approximately 170 K far above T(c) = 79 K. Upon oxygen isotope substitution ( 16O vs 18O) T(c) decreases marginally to 78.5 K, whereas T(*) is shifted to about 220 K. This huge isotope shift observed for T(*) which is absent in NMR and NQR experiments suggests that the mechanism leading to an isotope effect on the pseudogap has to involve a time scale in the range 10(-8)>tau>10(-13) s.  相似文献   

9.
We report 115In nuclear magnetic resonance (NMR) measurements in CeCoIn5 at low temperature (T approximately 70 mK) as a function of the magnetic field (H0) from 2 to 13.5 T applied perpendicular to the c axis. A NMR line shift reveals that below 10 T the spin susceptibility increases as sqrt[H0]. We associate this with an increase of the density of states due to the Zeeman and Doppler-shifted quasiparticles extended outside the vortex cores in a d-wave superconductor. Above 10 T a new superconducting state is stabilized, possibly the modulated phase predicted by Fulde, Ferrell, Larkin, and Ovchinnikov. This phase is clearly identified by a strong and linear increase of the NMR shift with the field, before a jump at the first order transition to the normal state.  相似文献   

10.
We report the first 17O NMR studies of a triangular-lattice superconductor Na(1/3)CoO2 x 4/3H(2)O and the host material Na(x)CoO2 (x=0.35 and 0.72). Knight shift measurements reveal that p-d hybridization induces sizable spin polarization in the O triangular-lattice layers. Water intercalation makes CoO2 planes homogeneous and enhances low frequency spin fluctuations near T(c)=4.5 K at some finite wave vectors different from both the ferromagnetic and "120 degree" modes.  相似文献   

11.
Studies of magnetization, magnetoresistance, and magnetic oscillations in semiconductor-multiferroics Eu(1-x)Ce(x)Mn2O5 (x = 0.2-0.25) (ECMO) at temperatures ranging from 5 to 350 K in magnetic fields up to 6 T are presented. It is shown that phase separation and charge carrier self-organization in the crystals give rise to a layered superstructure perpendicular to the c axis. An effect of magnetic field cycling on the superstructure, magnetization, and magnetoresistance is demonstrated. X-ray diffraction studies of ECMO demonstrating the effect of magnetic field on the superstructure are presented. The de Haas-van Alphen magnetization oscillations in high magnetic fields and the temperature-induced magnetic oscillations in a fixed magnetic field are observed at low temperatures. Below 10 K the quantum corrections to magnetization due to the weak charge carrier localization in 2D superlattice layers occur. It is shown that at all the temperatures the Eu(1-x)Ce(x)Mn2O5 magnetic state is dictated by superparamagnetism of isolated ferromagnetic domains.  相似文献   

12.
We report on the first NMR study of powder and single crystal samples of thallium indium sulfide, TlInS(2). The crystal under study is a pure single-layer TlInS(2) polytype. Our findings show that transformation from the high temperature paraelectric phase to the low temperature ferroelectric phase occurs via an incommensurate phase that exists in the temperature range from T(c) = 192 K to T(i) = 205 K. On approaching the phase transition at T(i) from above, the crystal exhibits a soft mode behavior. A discrepancy in the literature data on the phase transitions in TlInS(2) is discussed and ascribed to polytypism of the TlInS(2) crystals.  相似文献   

13.
Using elastic and inelastic neutron scattering we show that a cubic spinel, CdCr2O4, undergoes an elongation along the c axis (c > a = b) at its spin-Peierls-like phase transition at T(N) = 7.8 K. The Néel phase (T < T(N)) has an incommensurate spin structure with a characteristic wave vector Q(M) = (0, delta,1) with delta approximately 0.09 and with spins lying on the ac plane. This is in stark contrast to another well-known Cr-based spinel, ZnCr2O4, that undergoes a c-axis contraction and a commensurate spin order. The magnetic excitation of the incommensurate Néel state has a weak anisotropy gap of 0.6 meV and it consists of at least three bands extending up to 5 meV.  相似文献   

14.
The thermodynamics of the superconducting transition is studied as a function of doping using high-resolution expansivity data of YBa(2)Cu(3)O (x) single crystals and Monte Carlo simulations of the anisotropic 3D- XY model. We directly show that T(c) of underdoped YBa(2)Cu(3)O (x) is strongly suppressed from its mean-field value (T(MF)(c)) by phase fluctuations of the superconducting order parameter. For overdoped YBa(2)Cu(3)O (x) fluctuation effects are greatly reduced and T(c) approximately T(MF)(c). We find that T(MF)(c) exhibits a similar doping dependence as the pseudogap energy, naturally suggesting that the pseudogap arises from phase-incoherent Cooper pairing.  相似文献   

15.
We show that finite angular momentum pairing chiral superconductors on the triangular lattice have point zeroes in the complex gap function. A topological quantum phase transition takes place through a nodal superconducting state at a specific carrier density x(c) where the normal state Fermi surface crosses the isolated zeros. For spin-singlet pairing, we show that the second-nearest-neighbor (d+id)-wave pairing can be the dominant pairing channel. The gapless critical state at x (c) approximately 0.25 has six Dirac points and is topologically nontrivial with a T3 spin relaxation rate below T(c). This picture provides a possible explanation for the unconventional superconducting state of Na(x)Co O(2). yH(2)O. Analyzing a pairing model with strong correlation using the Gutzwiller projection and symmetry arguments, we study these topological phases and phase transitions as a function of Na doping.  相似文献   

16.
Far-infrared reflectivity along the c axis in T* phase SmLa(1-x)Sr(x)CuO(4-delta) single crystals is measured down to 8 cm(-1). Below T(c), the conductivity peak is observed at 25 cm(-1) for x = 0.15 ( T(c) = 30 K) along with two reflectivity edges at 13 and 27 cm(-1). The conductivity peak is attributed to the transverse Josephson plasma mode between two longitudinal Josephson plasma modes, while the oscillator strength of the peak is found to be smaller than that calculated using the Josephson-coupled multilayer model. The difference is explained by assuming that only a few junctions at the disordered (La,Sr)(2)O(2-delta) block layer take part in the plasma oscillation with omega(pI(')) = 27 cm(-1).  相似文献   

17.
We report the results of measurements of the dc susceptibility and the 23Na-NMR response of Na2V3O7, a recently synthesized, nonmetallic low dimensional spin system. Our results indicate that, upon reducing the temperature to below 100 K, the V4+ moments are gradually quenched, leaving only one moment out of nine active. The NMR data reveal a phase transition at very low temperatures. With decreasing applied field H, the critical temperature shifts towards T=0 K, suggesting that Na2V3O7 may be regarded as an insulator reaching a quantum critical point at H=0.  相似文献   

18.
The changes in crystal structure of LiFeSi(2)O(6) induced by the phase transition between the high-temperature C2/c and low-temperature P2(1)/c phase are studied using the density functional theory. For both monoclinic phases, the phonon dispersion curves and phonon density of states are calculated. The infrared absorption coefficients are obtained and analyzed in both structural phases of LiFeSi(2)O(6). The soft mode inducing the phase transition is revealed at the Z point of the Brillouin zone of the high-symmetry C2/c phase. The pressure dependence of the soft mode is studied and the mechanism of the structural phase transition in LiFeSi(2)O(6) is discussed.  相似文献   

19.
Magnetization measurements under hydrostatic pressure up to 8 kbar in the pyrochlore superconductor RbOs2O6 (T(c) approximately or equal 6.3 K at p=0) were carried out. A positive pressure effect on T(c) with dT(c)/dp=0.090(3) K/kbar was observed, whereas no pressure effect on the magnetic penetration depth lambda was detected. The pressure independent ratio 2 Delta(0)/k(B)T(c)=3.72(2) (Delta(0) is the superconducting gap at zero temperature) was found to be close to the BCS value 3.52. Magnetization and muon-spin rotation measurements of lambda(T) indicate that RbOs2O6 is an adiabatic s-wave BCS-type superconductor. The value of lambda extrapolated to zero temperature and ambient pressure was estimated to be 230(30) nm.  相似文献   

20.
Motivated by recent experiments on material Ba3NiSb2O9, we propose two novel spin liquid phases (A and B) for spin-1 systems on a triangular lattice. At the mean field level, both spin liquid phases have gapless fermionic spinon excitations with quadratic band touching; thus, in both phases the spin susceptibility and γ=C(v)/T saturate to a constant at zero temperature, which are consistent with the experimental results on Ba3NiSb2O9. On the lattice scale, these spin liquid phases have Sp(4)~SO(5) gauge fluctuation, while in the long wavelength limit this Sp(4) gauge symmetry is broken down to U(1)×Z(2) in the type A spin liquid phase, and broken down to Z(4) in the type B phase. We also demonstrate that the A phase is the parent state of the ferroquadrupole state, nematic state, and the noncollinear spin density wave state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号