首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of imperfections on achievable secret-key generation rates of quantum key distribution protocols is investigated. As examples of relevant imperfections, we consider tagging of Alice's qubits and dark counts at Bob's detectors, while we focus on a powerful eavesdropping strategy which takes full advantage of tagged signals. It is demonstrated that error correction and privacy amplification based on a combination of a two-way classical communication protocol and asymmetric Calderbank-Shor-Steane codes may significantly postpone the disastrous influence of dark counts. As a result, the distances are increased considerably over which a secret key can be distributed in optical fibres reliably. Results are presented for the four-state, the six-state, and the decoy-state protocols.  相似文献   

2.
We propose and analyze a new approach for quantum state transfer between remote spin qubits. Specifically, we demonstrate that coherent quantum coupling between remote qubits can be achieved via certain classes of random, unpolarized (infinite temperature) spin chains. Our method is robust to coupling-strength disorder and does not require manipulation or control over individual spins. In principle, it can be used to attain perfect state transfer over an arbitrarily long range via purely Hamiltonian evolution and may be particularly applicable in a solid-state quantum information processor. As an example, we demonstrate that it can be used to attain strong coherent coupling between nitrogen-vacancy centers separated by micrometer distances at room temperature. Realistic imperfections and decoherence effects are analyzed.  相似文献   

3.
We investigate the transition to quantum chaos, induced by static imperfections, for an operating quantum computer that simulates efficiently a dynamical quantum system, the sawtooth map. For the different dynamical regimes of the map, we discuss the quantum chaos border induced by static imperfections by analyzing the statistical properties of the quantum computer eigenvalues. For small imperfection strengths the level spacing statistics is close to the case of quasi-integrable systems while above the border it is described by the random matrix theory. We have found that the border drops exponentially with the number of qubits, both in the ergodic and quasi-integrable dynamical regimes of the map characterized by a complex phase space structure. On the contrary, the regime with integrable map dynamics remains more stable against static imperfections since in this case the border drops only algebraically with the number of qubits. Received 19 June 2002 / Received in final form 30 September 2002 Published online 17 Decembre 2002 RID="a" ID="a"e-mail: dima@irsamc.ups-tlse.fr RID="b" ID="b"UMR 5626 du CNRS  相似文献   

4.
We study numerically the effects of static imperfections and residual couplings between qubits for the quantum phase estimation algorithm with two qubits. We show that the success probability of the algorithm is affected significantly more by static imperfections than by random noise errors in quantum gates. An improvement of the algorithm accuracy can be reached by application of the Pauli-random-error-correction method (PAREC).  相似文献   

5.
We present a weak blind signature scheme based on a genuinely entangled six qubits state. Different from classical blind signature schemes and current quantum signature schemes, our quantum weak blind signature scheme could guarantee not only the unconditionally security but also the anonymity of the message owner. To achieve that, quantum key distribution and one-time pad are adopted in our scheme. Our scheme has the characteristics of classical security and quantum security.  相似文献   

6.
Among a number of candidates, photons have advantages for implementing qubits: very weak coupling to the environment, the existing single photon measurement technique, and so on. Moreover, commercially available fiber-optic devices enable us to construct quantum circuits that consist of one-qubit operations (including classically controlled gates). Fiber optics resolves the mode matching problems in conventional optics and provides mechanically stable optical circuits. A quantum Fourier transform (QFT) followed by measurement was demonstrated with a simple circuit based on fiber optics. The circuit was shown to be robust against imperfections in the rotation gate. The error probability was estimated to be 0.01 per qubit, which corresponded to error-free operation for 100 qubits. The error probability can be further reduced to achieve successful QFT of 1024 qubits by taking the majority of the accumulated results. As is well known, QFT is a key function in quantum computations such as the final part of Shor’s factorization algorithm. The present QFT circuit, in combination with controlled unitary gates, would make possible practical quantum computers. Possible schemes of realizing quantum computers in this line are explored.  相似文献   

7.
我们考虑初始无关联并且与由一个谐振子构成的环境之间互相耦合的三量子比特系统。通过研究量子比特-环境的耦合强度以及量子比特初始态对量子关联的影响,我们发现环境可以诱导量子关联,提出并证明了四个命题阐述谐振子如何调控三个量子比特中量子关联的分布。给出了产生量子关联的条件。特别地,对于弱耦合,我们不但能够获得很多的量子关联,而且还使量子比特系统和环境始终处于分离态。一般地,量子关联动力学是很复杂 的,这是由于环境起着两个互相竞争的作用:一方面诱导出各个比特之间的量子关联;另一方面又使它们发生消相干,从而破坏量子关联。  相似文献   

8.
我们考虑初始无关联并且与由一个谐振子构成的环境之间互相耦合的三量子比特系统。通过研究量子比特-环境的耦合强度以及量子比特初始态对量子关联的影响,我们发现环境可以诱导量子关联,提出并证明了四个命题阐述谐振子如何调控三个量子比特中量子关联的分布。给出了产生量子关联的条件。特别地,对于弱耦合,我们不但能够获得很多的量子关联,而且还使量子比特系统和环境始终处于分离态。一般地,量子关联动力学是很复杂 的,这是由于环境起着两个互相竞争的作用:一方面诱导出各个比特之间的量子关联;另一方面又使它们发生消相干,从而破坏量子关联。  相似文献   

9.
A long distance quantum teleportation experiment with a fiber-delayed Bell state measurement (BSM) is reported. The source creating the qubits to be teleported and the source creating the necessary entangled state are connected to the beam splitter realizing the BSM by two 2 km long optical fibers. In addition, the teleported qubits are analyzed after 2.2 km of optical fiber, in another laboratory separated by 55 m. Time-bin qubits carried by photons at 1310 nm are teleported onto photons at 1550 nm. The fidelity is of 77%, above the maximal value obtainable without entanglement. This is the first realization of an elementary quantum relay over significant distances, which will allow an increase in the range of quantum communication and quantum key distribution.  相似文献   

10.
Quantum computation can be performed by encoding logical qubits into the states of two or more physical qubits, and control of effective exchange interactions and possibly a global magnetic field. This "encoded universality" paradigm offers potential simplifications in quantum computer design since it does away with the need to control physical qubits individually. Here we show how encoded universality schemes can be combined with fault-tolerant quantum error correction, thus establishing the scalability of such schemes.  相似文献   

11.
A major challenge in the field of quantum computing is the construction of scalable qubit coupling architectures. Here, we demonstrate a novel tunable coupling circuit that allows superconducting qubits to be coupled over long distances. We show that the interqubit coupling strength can be arbitrarily tuned over nanosecond time scales within a sequence that mimics actual use in an algorithm. The coupler has a measured on/off ratio of 1000. The design is self-contained and physically separate from the qubits, allowing the coupler to be used as a module to connect a variety of elements such as qubits, resonators, amplifiers, and readout circuitry over distances much larger than nearest-neighbor. Such design flexibility is likely to be useful for a scalable quantum computer.  相似文献   

12.
Time‐bin encoding is an attractive method for transmitting photonic qubits over long distances with minimal decoherence. It allows a simple receiver for quantum key distribution (QKD) that extracts a key by measuring time of arrival of photons and detects eavesdropping by measuring interference of pulses in different time bins. In the past, coherent pulses have been generated using a CW laser and an intensity modulator. A greatly simplified transmitter is proposed and demonstrated here that works by directly modulating the laser diode. Coherence between pulses is maintained by a weak seed laser. The modulator‐free source creates time‐bin encoded pulses with a high extinction ratio (29.4 dB) and an interference visibility above 97 %. The resulting QKD transmitter gives estimated secure key rates up to 4.57 Mbit/s, the highest yet reported for coherent‐one‐way QKD, and can be programmed for all protocols using weak coherent pulses.  相似文献   

13.
Using the method of the Jordan--Wigner transformation for solving different spin--spin correlation functions, we have investigated the generation of next-nearest-neighbouring entanglement in a one-dimensional quantum Ising spin chain with the Gaussian distribution impurities of exchange couplings and external magnetic fields taken into account. The maximal value of entanglement between the next-nearest-neighbouring qubits in the transverse Ising model was analysed in detail by varying the effectively controlled parameters such as interchange coupling, magnetic field and the system impurity. For such systems, where both exchange couplings and external magnetic field disorder appear, we show that it is possible to achieve next-nearest-neighbouring entanglement better than the previously discussed pure Ising spin chain case. We also show that the Gaussian distribution impurity can induce next-nearest-neighbouring entanglement, which can be used as a means to characterize quantum phase transition.  相似文献   

14.
In the original BB84 quantum key distribution protocol, the states are prepared and measured randomly, which lose the unmatched detection results. To improve the sifting efficiency, biased bases selection BB84 protocol is proposed. Meanwhile, a practical quantum key distribution protocol can only transmit a finite number of signals, resulting in keys of finite length. The previous techniques for finite-key analysis focus mainly on the statistical fluctuations of the error rates and yields of the qubits. However, the prior choice probabilities of the two bases also have fluctuations by taking into account the finite-size effect. In this paper, we discuss the security of biased decoy state BB84 protocol with finite resources by considering all of the statistical fluctuations. The results can be directly used in the experimental realizations.  相似文献   

15.
Measurement-device-independent quantum key distribution(MDI-QKD) is immune to detector side channel attacks, which is a crucial security loophole problem in traditional QKD. In order to relax a key assumption that the sources are trusted in MDI-QKD, an MDI-QKD protocol with an untrusted source has been proposed. For the security of MDI-QKD with an untrusted source, imperfections in the practical experiment should also be taken into account. In this paper, we analyze the effects of fluctuations of internal transmittance on the security of a decoy-state MDI-QKD protocol with an untrusted source. Our numerical results show that both the secret key rate and the maximum secure transmission distance decrease when taken fluctuations of internal transmittance into consideration. Especially, they are more sensitive when Charlie's mean photon number per pulse is smaller. Our results emphasize that the stability of correlative optical devices is important for practical implementations.  相似文献   

16.
Recently, Ye and Ji constructed a multi-party quantum private comparison (MQPC) protocol with Bell entangled states (Sci. China Phys. Mech. Astron. 60(9), 090312, 2017). However, this protocol is only workable over an ideal quantum channel. In this paper, we take the collective noise channel into account and generalize Ye and Ji’s protocol into the ones against the collective-dephasing noise and the collective-rotation noise, respectively. Concretely, we use three-qubit entangled states instead of Bell states as the initial quantum states and employ the corresponding logical qubits immune to the collective noise instead of the physical qubits as the travelling particles. The output correctness and the security of the proposed robust MQPC protocols can be guaranteed.  相似文献   

17.
We prove a new version of the quantum accuracy threshold theorem that applies to non-Markovian noise with algebraically decaying spatial correlations. We consider noise in a quantum computer arising from a perturbation that acts collectively on pairs of qubits and on the environment, and we show that an arbitrarily long quantum computation can be executed with high reliability in D spatial dimensions, if the perturbation is sufficiently weak and decays with the distance r between the qubits faster than 1/r(D).  相似文献   

18.
Many promising schemes for quantum computing (QC) involve switching "on" and "off" a physical coupling between qubits. This may prove extremely difficult to achieve experimentally. Here we show that systems with a constant Heisenberg coupling can be employed for QC if we actively "tune" the transition energies of individual qubits. Moreover, we can collectively tune the qubits to obtain an exceptionally simple scheme: computations are controlled via a single "switch" of only six settings. Our schemes are applicable to a wide range of physical implementations, from excitons and spins in quantum dots through to bulk magnets.  相似文献   

19.
We show on the example of the Arnold cat map that classical chaotic systems can be simulated with exponential efficiency on a quantum computer. Although classical computer errors grow exponentially with time, the quantum algorithm with moderate imperfections is able to simulate accurately the unstable chaotic classical nonlinear dynamics for long times. The algorithm can be easily implemented on systems of a few qubits.  相似文献   

20.
We investigate the dynamics of two qubits coupled with a quantum oscillator by using the adiabatic approximation method. We take account of the interaction between the qubits and show how the entanglement is affected by the interaction parameter. The most interesting result is that we can prolong the entanglement time or improve the entanglement degree by using an appropriate interaction parameter. As the generation and preservation of entanglement of qubits are crucial for quantum information processing, our research will be useful.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号