首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report results of the Monte Carlo simulations of systems containing heterodimers of biological active ligands and water molecules. The study was designed to identify the possible formation of intermolecular hydrogen bonds in such systems in order to investigate the molecular mechanisms of hetero-association of aromatic ligands in aqueous solution. The geometry optimization and the calculation of the atomic charges of free ligands were carried out at DFT/B3LYP level of theory. Monte Carlo simulations with Metropolis algorithm were used to determine the low energy conformations of heterodimers in water clusters. The analysis of the Monte Carlo simulation results allows us to describe in detail the hydration properties of all investigated heterodimers and to determine the intermolecular hydrogen bonds between the functional donor–acceptor groups for some of hetero-associates under investigation. In the case of heterodimers without intermolecular hydrogen bonds, the additional stabilization of these hetero-complexes can be explained by the formation the water bridges between donor and acceptor groups of the ligands.  相似文献   

2.
Lattice Monte Carlo simulations of two-dimensional amphiphile solutions are used to examine the accuracy of the mixing properties predicted by lattice theories such as the Flory-Huggins theory, random-solution approximation, and quasichemical approximation. The internal energy, Helmholtz free energy, and entropy of mixing have been calculated from the configurational energy data obtained from the simulations, and the effect of nonrandom mixing on these properties has been determined. The quasichemical approximation predicts the entropy and Helmholtz free energy of mixing accurately for the amphiphile solution, but fails to predict the energy of mixing, due to the presence of microphase (self-aggregation) separation, which is beyond the reach of the quasichemical approximation, a mean-field theory. Helmholtz free energy of mixing is predicted accurately, and the shielding of the solvophobic segments in the microphase leads to small energies of mixing compared to the entropy of mixing. Copyright 2000 Academic Press.  相似文献   

3.
Thermochemistry of gas-phase ion-water clusters together with estimates of the hydration free energy of the clusters and the water ligands are used to calculate the hydration free energy of the ion. Often the hydration calculations use a continuum model of the solvent. The primitive quasichemical approximation to the quasichemical theory provides a transparent framework to anchor such efforts. Here we evaluate the approximations inherent in the primitive quasichemical approach and elucidate the different roles of the bulk medium. We find that the bulk medium can stabilize configurations of the cluster that are usually not observed in the gas phase, while also simultaneously lowering the excess chemical potential of the ion. This effect is more pronounced for soft ions. Since the coordination number that minimizes the excess chemical potential of the ion is identified as the optimal or most probable coordination number, for such soft ions the optimum cluster size and the hydration thermodynamics obtained with and without account of the bulk medium on the ion-water clustering reaction can be different. The ideas presented in this work are expected to be relevant to experimental studies that translate thermochemistry of ion-water clusters to the thermodynamics of the hydrated ion and to evolving theoretical approaches that combine high-level calculations on clusters with coarse-grained models of the medium.  相似文献   

4.
Intermolecular potential functions have been developed for use in computer simulations of substituted benzenes. Previously reported optimized potentials for liquid simulations (OPLS) for benzene and organic functional groups were merged and tested by computing free energies of hydration for toluene, p-xylene, phenol, anisole, benzonitrile, p-cresol, hydroquinone, and p-dicyanobenzene. The calculations featured Monte Carlo simulations at 25°C and 1 atm with statistical perturbation theory. The average difference between the computed results and experimental data for the absolute free energies of hydration is 0.5 kcal/mol. The AM1-SM2 method is also found to perform well in predicting the free energies of hydration for the substituted benzenes. In addition, the Monte Carlo simulations provided details on the hydration of the substituted benzenes, in particular for the solute–water hydrogen bonding. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
The solvation free energies of amino acids and their side-chain analogues in water and cyclohexane are calculated by using Monte Carlo simulation. The molecular interactions are described by the OPLS-AA force field for the amino acids and the TIP4P model for water, and the free energies are determined by using the Bennett acceptance method. Results for the side-chain analogues in cyclohexane and in water are used to evaluate the performance of the force field for the van der Waals and the electrostatic interactions, respectively. Comparison of the calculated hydration free energies for the amino acid analogues and the full amino acids allows assessment of the additivity of the side chain contributions on the number of hydrating water molecules. The hydration free energies of neutral amino acids can be reasonably approximated by adding the contributions of their side chains to that of the hydration of glycine. However, significant nonadditivity in the free energy is found for the zwitterionic form of amino acids with polar side chains. In serine and threonine, intramolecular hydrogen bonds are formed between the polar side chains and backbone groups, leading to weaker solvation than for glycine. In contrast, such nonadditivity is not observed in tyrosine, in which the hydroxyl group is farther separated from, and therefore cannot form an intramolecular hydrogen bond with, the backbone. For histidine we find that a water molecule can form a bridge when the intramolecular hydrogen bond between the polar group and the backbone is broken.  相似文献   

6.
Accumulation of greenhouse gases, especially carbon dioxide, is believed to be the key factor in global climate change. To develop effective ways to remove CO(2) from the atmosphere, it is helpful to understand the mechanism of CO(2) solvation first. Here we investigate the thermodynamics of CO(2) hydration using quasi-chemical theory. Two approaches for estimating hydration free energy are carried out. Both agree reasonably well with experimental measurements. Analysis of the free energy components reveals that the weak hydration free energy results from a balance of unfavorable molecular packing and favorable chemical association.  相似文献   

7.
Water molecules play a vital role in biological and engineered systems by controlling intermolecular interactions in the aqueous phase. Inhomogeneous fluid solvation theory provides a method to quantify solvent thermodynamics from molecular dynamics or Monte Carlo simulations and provides an insight into intermolecular interactions. In this study, simulations of TIP4P‐2005 and TIP5P‐Ewald water molecules around a model beta sheet are used to investigate the orientational correlations and predicted thermodynamic properties of water molecules at a protein surface. This allows the method to be benchmarked and provides information about the effect of a protein on the thermodynamics of nearby water molecules. The results show that the enthalpy converges with relatively little sampling, but the entropy and thus the free energy require considerably more sampling to converge. The two water models yield a very similar pattern of hydration sites, and these hydration sites have very similar thermodynamic properties, despite notable differences in their orientational preferences. The results also predict that a protein surface affects the free energy of water molecules to a distance of approximately 4.0 Å, which is in line with previous work. In addition, all hydration sites have a favorable free energy with respect to bulk water, but only when the water–water entropy term is included. A new technique for calculating this term is presented and its use is expected to be very important in accurately calculating solvent thermodynamics for quantitative application. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
A computer simulation of the structure of Na+ ion hydration shells with sizes in the range of 1 to 100 molecules in a planar model nanopore 0.7 nm wide with structureless hydrophilic walls is performed using the Monte Carlo method at a temperature of 298 K. A detailed model of many-body intermolecular interactions, calibrated with reference to experimental data on the free energy and enthalpy of reactions after gaseous water molecules are added to a hydration shell, is used. It is found that perturbations produced by hydrophilic walls cause the hydration shell to decay into two components that differ in their spatial arrangement and molecular orientational order.  相似文献   

9.
The Monte Carlo method is used to calculate the free energy, entropy, and work of water cluster formation in the field of Na+Cl ion pairs. A detailed model is used that allows for polarization and covalent many-particle interactions, as well as the effects of ion charge reversal. The model is matched to the experimental data on the free energy of ion hydration and the results of the quantum-chemical calculations of stable configurations. The hydration leads to the cleavage of an ion pair in a molecular cluster after approximately ten water molecules are captured. As vapor molecules are added, the stable interion distance monotonically elongates. The low free energy barrier separating the dissociated and nondissociated states of the ion pair in an equilibrium cluster does not hinders the reversible spontaneous transitions between the states, which are responsible for strong fluctuations and the instability of the system. Unlike hydroxonium-containing ion pairs, the formation of long-lived metastable states of hydrated Na+Cl pairs is impossible.  相似文献   

10.
To shed light on the microscopic mechanism of hydrophobic hydration, we study a simplified lattice model for water solutions in which the orientational nature of hydrogen bonding as well as the degeneracy related to proton distribution are taken into account. Miscibility properties of the model are looked at for both polar (hydrogen bonding) and nonpolar (non-hydrogen bonding) solutes. A quasichemical solution for the pure system is reviewed and extended to include the different kinds of solute. A Monte Carlo study of our model yields a novel feature for the local structure of the hydration layer: energy correlation relaxation times for solvation water are larger than the corresponding relaxation times for bulk water. This result suggests the presence of ordering of water particles in the first hydration shell. A nonassociating model solvent, represented by a lattice gas, presents opposite behavior, indicating that this effect is a result of the directionality of the interaction. In presence of polar solutes, we find an ordered mixed pseudophase at low temperatures, indicating the possibility of closed loops of immiscibility.  相似文献   

11.
We calculate the hydration free energy of liquid TIP3P water at 298 K and 1 bar using a quasi-chemical theory framework in which interactions between a distinguished water molecule and the surrounding water molecules are partitioned into chemical associations with proximal (inner-shell) waters and classical electrostatic-dispersion interactions with the remaining (outer-shell) waters. The calculated free energy is found to be independent of this partitioning, as expected, and in excellent agreement with values derived from the literature. An analysis of the spatial distribution of inner-shell water molecules as a function of the inner-shell volume reveals that water molecules are preferentially excluded from the interior of large volumes as the occupancy number decreases. The driving force for water exclusion is formulated in terms of a free energy for rearranging inner-shell water molecules under the influence of the field exerted by outer-shell waters in order to accommodate one water molecule at the center. The results indicate a balance between chemical association and molecular packing in liquid water that becomes increasingly important as the inner-shell volume grows in size.  相似文献   

12.
A high fidelity molecular model is developed for a metal-organic framework (MOF) with narrow (approximately 7.3 A?) nearly square channels. MOF potential models, both with and neglecting explicit polarization, are constructed. Atomic partial point charges for simulation are derived from both fragment-based and fully periodic electronic structure calculations. The molecular models are designed to accurately predict and retrodict material gas sorption properties while assessing the role of induction for molecular packing in highly restricted spaces. Thus, the MOF is assayed via grand canonical Monte Carlo (GCMC) for its potential in hydrogen storage. The confining channels are found to typically accommodate between two to three hydrogen molecules in close proximity to the MOF framework at or near saturation pressures. Further, the net attractive potential energy interactions are dominated by van der Waals interactions in the highly polar MOF - induction changes the structure of the sorbed hydrogen but not the MOF storage capacity. Thus, narrow channels, while providing reasonably promising isosteric heat values, are not the best choice of topology for gas sorption applications from both a molecular and gravimetric perspective.  相似文献   

13.
In this study, the hydration of a model Lennard-Jones solute particle and the analytical approximations of the free energy of hydration as functions of solute microscopic parameters are analyzed. The control parameters of the solute particle are the charge, the Lennard-Jones diameter, and also the potential well depth. The obtained multivariate free energy functions of hydration were parametrized based on Metropolis Monte Carlo simulations in the extended NpT ensemble, and interpreted based on mesoscopic solvation models proposed by Gallicchio and Levy [J. Comput. Chem. 25, 479 (2004)], and Wagoner and Baker [Proc. Natl. Acad. Sci. U.S.A. 103, 8331 (2006)]. Regarding the charge and the solute diameter, the dependence of the free energy on these parameters is in qualitative agreement with former studies. The role of the third parameter, the potential well depth not previously considered, appeared to be significant for sufficiently precise bivariate solvation free energy fits. The free energy fits for cations and neutral solute particles were merged, resulting in a compact manifold of the free energy of solvation. The free energy of hydration for anions forms two separate manifolds, which most likely results from an abrupt change of the coordination number when changing the size of the anion particle.  相似文献   

14.
The specific interactions between base pairs and amino acids were studied by the multicanonical Monte Carlo method. We sampled numerous interaction configurations and side‐chain conformations of the amino acid by the multicanonical algorithm, and calculated the free energies of the interactions between an amino acid at given Cα positions and a fixed base pair. The contour maps of free energy derived from this calculation represent the preferred Cα position of the amino acid around the base, and these maps of various combinations of bases and amino acids can be used to quantify the specificity of intrinsic base–amino acid interactions. Similarly, enthalpy and entropy maps will provide further details of the specific interactions. We have also calculated the free‐energy map of the orientations of the Cα Cβ bond vector, which indicates the preferential orientation of the amino acid against the base. We compared the results obtained by the multicanonical method with those of the exhaustive sampling and canonical Monte Carlo methods. The free‐energy map of the base–amino acid interaction obtained by the multicanonical simulation method was nearly identical to the accurate result derived from the exhaustive sampling method. This indicates that a single multicanonical Monte Carlo simulation can produce an accurate free‐energy map. Multicanonical Monte Carlo sampling produced free‐energy maps that were more accurate than those produced by canonical Monte Carlo sampling. Thus, the multicanonical Monte Carlo method can serve as a powerful tool for estimating the free‐energy landscape of base–amino acid interactions and for elucidating the mechanism by which amino acids of proteins recognize particular DNA base pairs. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 954–962, 2000  相似文献   

15.
《Liquid crystals》1999,26(6):871-884
Director configurations in a nematic liquid crystal can be determined by minimizing its total elastic free energy, for given elastic constants and specific boundary conditions. In some cases, these configurations have been obtained by numerical procedures where the elastic free energy density plays the same role as the overall potential energy in a standard Metropolis Monte Carlo simulation. The interaction energies or potentials used in these studies are short ranged but, in general, not pairwise additive, unless the three elastic constants are set to a common value, thus reducing the potential to that in the well-known Lebwohl-Lasher lattice model. On the other hand, we can construct, in different ways, a lattice model with pairwise additive interactions, which approximately reproduces the elastic free energy density, where the parameters defining the pair potential are expressed as linear combinations of elastic constants. An anisotropic nematogenic pair interaction of this kind, originally proposed by Gruhn and Hess (T. Gruhn and S. Hess, Z. Naturforsch. A51, 1 (1996)), has recently been investigated by one of us, using a Monte Carlo simulation (S. Romano, Int. J. Mod. Phys. B 12, 2305 (1998)). Here we propose another approximate procedure for the mapping, and study the resulting pair potential model with the aid of Monte Carlo simulations. The behaviour of the nematic phases formed by the two models is compared together with the predictions of molecular field theory and the properties of the Lebwohl-Lasher model.  相似文献   

16.
17.
Electrodeposition of copper (Cu) involves length scales of a micrometer or even less. Several theoretical techniques such as continuum Monte Carlo, kinetic Monte Carlo (KMC), and molecular dynamics have been used for simulating this problem. However the multiphenomena characteristics of the problem pose a challenge for an efficient simulation algorithm. Traditional KMC methods are slow, especially when modeling surface diffusion with large number of particles and frequent particle jumps. Parameter estimation involving thousands of KMC runs is very time-consuming. Thus a less time-consuming and novel multistep continuum Monte Carlo simulation is carried out to evaluate the step wise free energy change in the process of electrochemical copper deposition. The procedure involves separate Monte Carlo codes employing different random number criterion (using hydrated radii, bare radii, hydration number of the species, redox potentials, etc.) to obtain the number of species (CuCl(2) or CuSO(4) or Cu as the case may be) and in turn the free energy. The effect of concentration of electrolyte, influence of electric field and presence of chloride ions on the free energy change for the processes is studied. The rate determining step for the process of electrodeposition of copper from CuCl(2) and CuSO(4) is also determined.  相似文献   

18.
Free Energy Perturbations (FEP) in the context of Monte Carlo (MC) simulations were conducted to predict the relative free energies of binding for a series of human Src SH2 domain ligands. Two procedures for disappearing atoms during a single-topology FEP are investigated and dramatic differences in free energy convergence behavior are seen. Comparison of these two protocols suggests that the coupling of the removal of angular constraints with the disappearance of an atom may significantly slow free energy convergence. The series of ligands under investigation here cover a range of modifications at the 3-position of 4-({[4-(cyclohexyl methoxy)benzyl]amino}carbonyl) phenyl phosphate. Unlike any other compound in this study, the 3-amide analog can form two hydrogen bonds within the region of the perturbation, one to a backbone amide hydrogen and one to a highly coordinated water molecule. Agreement with experimental trends in binding affinity is seen, although the computed relative free energy of binding of the amido compound is underestimated. These results are reconciled by examination of the hydration energies of model systems, which predict primary amides as too hydrophilic.  相似文献   

19.
The Monte Carlo bicanonical statistical ensemble method has been employed to calculate the dependences of the Gibbs free energy, formation work, and entropy on the size of a hydration shell grown from water vapor on single-charged chlorine anion in a model planar nanopore with hydrophilic structureless walls at 298 K. A refined model comprising many-particle polarization interactions and calibrated with respect to experimental data on the free energy and enthalpy of the initial reactions of attachment of water molecules to the ion has been used. It has been found that a weak hydrophilicity of pore walls leads to destabilization of the hydration shell, while a strong one, on the contrary, causes its stabilization. The physical reason for the instability in the field of hydrophilic walls qualitatively differs from that under the conditions of hydration in bulk water vapor.  相似文献   

20.
alpha-Helix formation is known to be opposed by the entropy loss due to the folding and favored by the energy of molecular interactions. However, the underlying mechanism of these factors is still being discussed. Here we have used the experimental and calculation data for short alanine-based peptides embedded in water to model the mechanism of helix folding and unfolding and to calculate microscopically the free energy factors of alanine in the frame of helix coil conformational integrals. Classical helix-coil transition theories take into account the interactions in a peptide chain only if the i, i + 3 peptide bond participates in hydrogen bonding. But quantum mechanical calculations showed that interactions of the i, i + 2 peptide bond play an important role in helix folding too. We also included the short-range repulsive interactions due to molecular steric clashes and the end effects due to polar/hydrogen-bonding interactions at the N and C termini. The helix and coil regions of peptide conformational space were defined using an experimental steric criterion for hydrogen bonding. Arginine helix propensity was discussed and estimated. Monte Carlo numerical simulations of thermodynamics and kinetics for the 21 amino acid alpha-helical polypeptide Ac-A5(AAARA)3A-NMe were carried out and found to be in an agreement with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号