首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion-surface reactions involving BBr(n)(+) (n = 0--2) with a fluorinated self-assembled monolayer (F-SAM) surface were investigated using a multi-sector scattering mass spectrometer. Collisions of the B(+) ion yield BF(2)(+) at threshold energy with the simpler product ion BF(+)* appearing at higher collision energies and remaining of lower abundance than BF(2)(+) at all energies examined. In addition, the reactively sputtered ion CF(+) accompanies the formation of BF(2)(+) at low collision energies. These results stand in contrast with previous data on the ion-surface reactions of atomic ions with the F-SAM surface in that the threshold and most abundant reaction products in those cases involved the abstraction of a single fluorine atom. Gas-phase enthalpy data are consistent with BF(2)(+) being the thermodynamically favored product. The fact that the abundance of BF(2)(+) is relatively low and relatively insensitive to changes in collision energy suggests that this reaction proceeds through an entropically demanding intermediate at the vacuum--surface interface, one which involves interaction of the B(+) ion simultaneously with two fluorine atoms. By contrast with the reaction of B(+), the odd-electron species BBr(+)* reacts with the F-SAM surface to yield an abundant single-fluorine abstraction product, BBrF(+). Corresponding gas-phase ion--molecule experiments involving B(+) and BBr(+)* with C(6)F(14) also yield the products BF(+)* and BF(2)(+), but only in extremely low abundances and with no preference for double fluorine abstraction. Ion--surface reactions were also investigated for BBr(n)(+) (n = 0-2) with a hydrocarbon self-assembled monolayer (H-SAM) surface. Reaction of the B(+) ion and dissociative reactions of BBr(+)* result in the formation of BH(2)(+), while the thermodynamically less favorable product BH(+)* is not observed. Collisions of BBr(2)(+) with the H-SAM surface yield the dissociative ion-surface reaction products, BBrH(+) and BBrCH(3)(+). Substitution of bromine atoms on the projectile by hydrogen or alkyl radicals suggests that Br atoms may be transferred to the surface in a Br-for-H or Br-for-CH(3) transfer reaction in an analogous fashion to known transhalogenation reactions at the F-SAM surface. The results for the H-SAM surface stand in contrast to those for the F-SAM surface in that enhanced neutralization of the primary ions gives secondary ion signals one to two orders of magnitude smaller than those obtained when using the F-SAM surface, consistent with the relative ionization energies of the two materials.  相似文献   

2.
Surface-induced dissociation (SID) and reactions following impact of well-defined ion beams of polyatomic cations C2H5OH+, CH4+, and CH5+ (and its deuterated variants) at several incident angles and energies with self-assembled monolayers (SAM), carbon surfaces, and hydrocarbon covered stainless steel were investigated by the scattering method. Energy transfer and partitioning of the incident projectile energy into internal excitation of the projectile, translational energy of products, and energy transferred into the surface were deduced from the mass spectra and the translational energy and angular distributions of the product ions. Conversion of ion impact energy into internal energy of the recoiling ions peaked at about 17% of the incident energy for the perfluoro-hydrocarbon SAM, and at about 6% for the other surfaces investigated. Ion survival probability is about 30–50 times higher for closed-shell ions than for open-shell radical cations (e.g., 12% for CD5+ versus 0.3% for CD4+, at the incident angle of 60° with respect to the surface normal). Contour velocity plots for inelastic scattering of CD5+ from hydrocarbon-coated and hydrocarbon-free highly oriented pyrolytic graphite (HOPG) surfaces gave effective masses of the surface involved in the scattering event, approximately matching that of an ethyl group (or two methyl groups) and four to five carbon atoms, respectively. Internal energy effects in impacting ions on SID were investigated by comparing collision energy resolved mass spectra (CERMS) of methane ions generated in a low pressure Nier-type electron impact source versus those generated in a Colutron source in which ions undergo many collisions prior to extraction and are essentially vibrationally relaxed. This comparison supports the hypothesis that internal energy of incident projectile ions is fully available to drive their dissociation following surface impact.  相似文献   

3.
The internal energy of protonated leucine enkephalin has been manipulated in electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry with two newly designed pump-probe experiments. Blackbody infrared radiation was applied to pump an ion population into a well-defined internal energy distribution below the dissociation threshold. Following this pumping stage, the internal energy distribution was probed using on-resonance collisional activation to dissociate the ions. These pump-probe experiments were carried out in two different ways: (a) using on-resonance collisional activation with variable kinetic energies to dissociate the ions at a constant initial ion temperature (determining the precursor ion survival percentage as a function of kinetic energy) and (b) using on-resonance collisional activation with a constant kinetic energy to dissociate the ions at variable initial ion temperatures (to investigate the ion survival yield-initial ion temperature dependence). Using this approach, a detailed study of the effects of the initial ion temperature, the probing kinetic energy and the internal energy loss rate on the effective conversion efficiency of (laboratory-frame) kinetic energy to internal energy was conducted. This conversion efficiency was found to be dependent on the initial ion temperature. Depending on the experimental conditions the conversion efficiency (for collisions with argon) was estimated to be about 4.0 +/- 1.7%, which agrees with that obtained from a theoretical modeling. Finally, the reconstructed curves of the ion survival yield versus the mode of the (final) total internal energy distribution of the activated ion population (after pump and probe events) at different pump-probe conditions reveal the internal energy content of the activated ions.  相似文献   

4.
Dissociative scattering of CF3+ ions in collision with a self-assembled monolayer surface of fluorinated alkyl thiol on a gold 111 crystal has been studied at low ion kinetic energies (from 29 to 159 eV) using a custom built tandem mass spectrometer with a rotatable second stage energy analyzer and mass spectrometer detectors. Energy and intensity distributions of the scattered fragment ions were measured as a function of the fragment ion mass and scattering angle. Inelastically scattered CF3+ ions were not observed even at the lowest energy studied here. All fragment ions, CF2+, CF+, F+, and C+, were observed at all energies studied with the relative intensity of the highest energy pathway, C+, increasing and that of the lowest energy pathway, CF2+, decreasing with collision energy. Also, the dissociation efficiency of CF3+ decreased significantly as the collision energy was increased to 159 eV. Energy distributions of all fragment ions from the alkyl thiol surface showed two distinct components, one corresponding to the loss of nearly all of the kinetic energy and scattered over a broad angular range while the other corresponding to smaller kinetic energy losses and scattered closer to the surface parallel. The latter process is due to delayed dissociation of collisionally excited ions after they have passed the collision region as excited parent ions. A similar study performed at 74 eV using a LiF coated surface on a titanium substrate resulted only in one process for all fragment ions; corresponding to the delayed dissociation process. The intensity maxima for these fragmentation processes were shifted farther away from the surface parallel compared to the thiol surface. A new mechanism is proposed for the delayed dissociation process as proceeding via projectile ions' neutralization to long-lived highly excited Rydberg state(s), reionization by the potential field between the collision region and entrance to the energy analyzer, and subsequent dissociation several microseconds after collisional excitation. A kinematic analysis of experimental data plotted as velocity Newton diagrams demonstrates that the delayed dissociation process results from the collisions of the ion with the bulk surface; i.e., the self-assembled monolayer surface acts as a bulk surface. A similar analysis for the highly inelastic collision processes shows that these are due to stronger collisions with a fraction of the thiol molecular chain, varying in length (mass) with the ion energy.  相似文献   

5.
Dynamics of Ar atom collisions with a perfluorinated alkanethiol self-assembled monolayer (F-SAM) surface on gold were investigated by classical trajectory simulations and atomic beam scattering techniques. Both explicit-atom (EA) and united-atom (UA) models were used to represent the F-SAM surface; in the UA model, the CF3 and CF2 units are represented as single pseudoatoms. Additionally the nonbonded interactions in both models are different. The simulations show the three limiting mechanisms expected for collisions of rare gas atoms (or small molecules) with SAMs, that is, direct scattering, physisorption, and penetration. Surface penetration results in a translational energy distribution, P(Ef), that can be approximately fit to the Boltzmann for thermal desorption, suggesting that surface accommodation is attained to a large extent. Fluorination of the alkanethiol monolayer leads to less energy transfer in Ar collisions. This results from a denser and stiffer surface structure in comparison with that of the alkanethiol SAM, which introduces constraints for conformational changes which play a significant role in the energy-transfer process. The trajectory simulations predict P(Ef) distributions in quite good agreement with those observed in the experiments. The results obtained with the EA and UA models are in reasonably good agreement, although there are some differences.  相似文献   

6.
Long-lived metastable doubly positively charged diatomic ions of Mo2(2+) have been produced by Ar+ bombardment of a molybdenum metal surface. These exotic molecular dications, such as for example 92,95Mo2(2+) at m/z 93.5, could be observed in positive ion mass spectra for ion flight times of approximately 17 micros in a Cameca IMS-3f secondary ion mass spectrometer, when the ion extraction field was adjusted for detection of ions that are formed in the gas phase several micrometers in front of the sputtered surface. Mo2(2+) was observed at high primary current densities for projectile ions of Ar+, but could not be detected under very similar bombarding conditions for projectile ions of Xe+. Such a dependence of ion production by inert gas sputtering on the primary ion species [ionization energies: IP1(Ar) = 15.76 eV and IP1(Xe) = 12.13 eV] is unusual. It is shown that formation of Mo2(2+) dications takes place by resonant charge transfer in grazing gas-phase collisions between incoming projectile ions of Ar+ and sputtered molecular ions of Mo2+. The efficiency for such a resonant electron capture (Mo2+ + Ar+ --> Mo2(2+) + Ar) is of the order of 10(-5) for the bombarding conditions in our mass spectrometer and corresponds to a cross section of a few 10(-15) cm2.  相似文献   

7.
Surface-induced interactions of the projectile ion C2D4+ with room-temperature (hydrocarbon covered) stainless steel, carbon highly oriented pyrolytic graphite (HOPG), and two different types of diamond surfaces (O-terminated and H-terminated) were investigated over the range of incident energies from a few eV up to 50 eV. The relative abundance of the product ions in dependence on the incident energy of the projectile ion [collision-energy resolved mass spectra, (CERMS) curves] was determined. The product ion mass spectra contained ions resulting from direct dissociation of the projectile ions, from chemical reactions with the hydrocarbons on the surface, and (to a small extent) from sputtering of the surface material. Sputtering of the surface layer by low-energy Ar+ ions (5–400 eV) indicated the presence of hydrocarbons on all studied surfaces. The CERMS curves of the product ions were analyzed to obtain both CERMS curves for the products of direct surface-induced dissociation of the projectile ion and CERMS curves of products of surface reactions. From the former, the fraction of energy converted in the surface collision into the internal excitation of the projectile ion was estimated as 10% of the incident energy. The internal energy of the surface-excited projectile ions was very similar for all studied surfaces. The H-terminated room-temperature diamond surface differed from the other surfaces only in the fraction of product ions formed in H-atom transfer surface reactions (45% of all product ions formed versus 70% on the other surfaces).  相似文献   

8.
A method for determining the internal energy of biomolecule ions activated by collisions is demonstrated. The dissociation kinetics of protonated leucine enkephalin and doubly protonated bradykinin were measured using sustained off-resonance irradiation (SORI) collisionally activated dissociation (CAD) in a Fourier transform mass spectrometer. Dissociation rate constants are obtained from these kinetic data. In combination with Arrhenius parameters measured with blackbody infrared radiative dissociation, the "effective" temperatures of these ions are obtained. Effects of excitation voltage and frequency and the ion cell pressure were investigated. With typical SORI-CAD experimental conditions, the effective temperatures of these peptide ions range between 200 and 400 degrees C. Higher temperatures can be easily obtained for ions that require more internal energy to dissociate. The effective temperatures of both protonated leucine enkephalin and doubly protonated bradykinin measured with the same experimental conditions are similar. Effective temperatures for protonated leucine enkephalin can also be obtained from the branching ratio of the b(4) and (M + H - H(2)O)(+) pathways. Values obtained from this method are in good agreement with those obtained from the overall dissociation rate constants. Protonated leucine enkephalin is an excellent "thermometer" ion and should be well suited to establishing effective temperatures of ions activated by other dissociation techniques, such as infrared photodissociation, as well as ionization methods, such as matrix assisted laser desorption/ionization.  相似文献   

9.
We report studies of the internal energy deposited during activation of mass-selected ions through electron-ion collisions. Characteristic fragmentations of the molecular ion of limonene and W(CO) n/+ (n = 1–6) indicate that electron-induced dissociation in a Fourier transform ion cyclotron resonance mass spectrometer proceeds via multiple collisions and that the average internal energy deposited during the activation process can be selected to be similar to that associated with electron-impact ionization. Control of the degree of ion excitation through selection of the electron energy, flux, and interaction time with the ions of interest is demonstrated, and advantages of this promising activation technique are discussed.  相似文献   

10.
Dramatically different fragmentation patterns are obtained for 4-ethyl-2,6,7-trioxa-1-phosphabicyclo-[2.2.2]octane-1-oxide upon electron ionization (EI) and for the corresponding molecular ion on collision-induced dissociation (CID). Two reasons for this behaviour have been discovered. (i) Irreversible multistep isomerization of the molecular ions occurs prior to collisional activation in mass spectrometry/mass spectrometry (MS/MS). Isomerization reactions have been characterized by isotopic labelling and by examining structures of relevant unlabelled and labelled fragment ions by MS/MS. The extent of isomerization can be controlled by varying the amount of internal energy of the molecular ions. This has been done by changing the number of thermalizing collisions which the ions undergo with neutral molecules in the ion source. (ii) When multiple collisions are used to dissociate the molecular ions, the initially stable fragmentation products undergo extensive further decomposition. As a result, abundant phosphorus-containing fragment ions are obtained for the bicyclic phosphate in high-pressure CID, whereas electron ionization leads to predominant hydrocarbon ions. A minor change in the structure of this molecule has major effects on the fragmentation behaviour: high- and low-energy collisional activation spectra of the molecular ion of the corresponding phosphite are identical with the 12 e V EI mass spectrum of the neutral.  相似文献   

11.
Soft landing of mass-selected peptide ions onto reactive self-assembled monolayer surfaces (SAMs) was performed using a newly constructed ion deposition apparatus. SAM surfaces before and after soft landing were characterized ex situ using time-of-flight secondary-ion mass spectrometry (TOF-SIMS) and infrared reflection-absorption spectroscopy (IRRAS). We demonstrate that reactive landing (RL) results in efficient covalent linking of lysine-containing peptides onto the SAM of N-hydroxysuccinimidyl ester-terminated alkylthiol on gold (NHS-SAM). Systematic studies of the factors that affect the efficiency of RL revealed that the reaction takes place upon collision and is promoted by the kinetic energy of the ion. The efficiency of RL is maximized at ca. 40 eV collision energy. At high collision energies the RL efficiency decreases because of the competition with scattering of ions off the surface. The reaction yield is independent of the charge state of the projectile ions, suggesting that peptide ions undergo efficient neutralization upon collision. Chemical and physical properties of the SAM surface are also important factors that affect the outcome of RL. The presence of chemically reactive functional groups on the SAM surface significantly improves the reaction efficiency. RL of mass- and energy-selected peptide ions on surfaces provides a highly specific approach for covalent immobilization of biological molecules onto SAM surfaces.  相似文献   

12.
Classical trajectory simulations are performed to study energy transfer in collisions of protonated triglycine (Gly)(3) and pentaglycine (Gly)(5) ions with n-hexyl thiolate self-assembled monolayer (SAM) and diamond [111] surfaces, for a collision energy E(i) in the range of 10-110 eV and a collision angle of 45 degrees. Energy transfer to the peptide ions' internal degrees of freedom is more efficient for collision with the diamond surface; i.e., 20% transfer to peptide vibration/rotation at E(i) = 30 eV. For collision with diamond, the majority of E(i) remains in peptide translation, while the majority of the energy transfer is to surface vibrations for collision with the softer SAM surface. The energy-transfer efficiencies are very similar for (Gly)(3) and (Gly)(5). Constraining various modes of (Gly)(3) shows that the peptide torsional modes absorb approximately 80% of the energy transfer to the peptide's internal modes. The energy-transfer efficiencies depend on E(i). These simulations are compared with recent experiments of peptide SID and simulations of energy transfer in Cr(CO)(6)(+) collisions with the SAM and diamond surfaces.  相似文献   

13.
By applying different electric field strengths to the orifice-skimmer region of an electrospray ionization mass spectrometer, the rate of dissociation can be varied based on the amount of internal energy acquired by an ion through collisions with the curtain gas molecules. Both the Arrhenius equation and Rice-Ramsperger-Kassel (RRK) theory can be used to predict the rate of dissociation of internally excited molecules. A previously determined model for collision-induced dissociation is tested by comparison of predicted and experimentally observed orifice-skimmer potential differences for dissociation of ions. The rate of collision-induced dissociation of bradykinin ions is determined by monitoring the fragments produced in a mass spectrometer. The semi-quantitative model is found to yield effective predictions when accurate Arrhenius and RRK parameters are utilized.  相似文献   

14.
A new method of ion deceleration in a Fourier transform ion cyclotron resonance (FTICR) open cell is described that improves the performance of FTICR-MS instruments equipped with an internal source for laser desorption/ionization. Ion deceleration occurs in the front trapping cylinder of an open cylindrical cell. Decelerating voltages up to 100 V can be applied for 10-500 micros to the front cylinder during ion introduction. The deceleration field is uniformly distributed along the cylinder length giving a "smooth" deceleration, which means that the deceleration is effective over a large time interval and a large m/z range. This results in improved trapping efficiency of high-energy ions. We demonstrate efficient trapping of high (m/z 66 kDa) mass ions and the possibility to reduce the width of the kinetic energy distribution of MALDI ions with this arrangement.  相似文献   

15.
利用飞秒泵浦-探测技术结合飞行时间质谱(TOF-MS),研究了丙烯酸分子被200nm泵浦光激发到第二电子激发态(S2)后的超快预解离动力学.采集了母体离子和碎片离子的时间分辨质谱信号,并利用动力学方程对时间分辨离子质谱信号进行拟合和分析,揭示了预解离通道的存在.布居在S2激发态的分子通过快速的内转换弛豫到第一电子激发态(S1),时间常数为210fs,随后再经内转换从S1态弛豫到基态(S0)的高振动态,时间常数为1.49ps.分子最终在基态高振动态势能面上发生C-C键和C-O键的断裂,分别解离生成H2C=CH和HOCO、H2C=CHCO和OH中性碎片,对应的预解离时间常数分别约为4和3ps.碎片离子的产生有两个途径,分别来自于母体离子的解离和基态高振动态势能面上中性碎片的电离.  相似文献   

16.
A new model for energy exchange between translational and internal degrees of freedom in atom-molecule collisions has been developed. It is suitable for both steady state conditions (e.g., a large number of collisions with thermal kinetic energies) and non-steady state conditions with an arbitrary distribution of collision energies (e.g., single high-energy collisions). In particular, it does not require that the collision energies be characterized by a quasi-thermal distribution, but nevertheless it is capable of producing a Boltzmann distribution of internal energies with the correct internal temperature under quasi-thermal conditions. The energy exchange is described by a transfer probability density that depends on the initial relative kinetic energy, the internal energy of the molecule, and the amount of energy transferred. The probability density for collisions that lead to excitation is assumed to decrease exponentially with the amount of transferred energy. The probability density for de-excitation is obtained from microscopic reversibility. The model has been implemented in the ion trap simulation program ITSIM and coupled with an Rice-Rampsberger-Kassel-Marcus (RRKM) algorithm to describe the unimolecular dissociation of populations of ions. Monte Carlo simulations of collisional energy transfer are presented. The model is validated for non-steady state conditions and for steady state conditions, and the effect of the kinetic energy dependence of the collision cross-section on internal temperature is discussed. Applications of the model to the problem of chemical mass shifts in RF ion trap mass spectrometry are shown.  相似文献   

17.
We have investigated the deep-UV photoinduced, homolytic bond cleavage of amyl nitrite to form NO and pentoxy radicals. One-color multiphoton ionization with ultrashort laser pulses through the S(2) state resonance gives rise to photoelectron spectra that reflect ionization from the S(1) state. Time-resolved pump-probe photoionization measurements show that upon excitation at 207 nm, the generation of NO in the v = 2 state is delayed, with a rise time of 283 (16) fs. The time-resolved mass spectrum shows the NO to be expelled with a kinetic energy of 1.0 eV, which is consistent with dissociation on the S(1) state potential energy surface. Combined, these observations show that the first step of the dissociation reaction involves an internal conversion from the S(2) to the S(1) state, which is followed by the ejection of the NO radical on the predissociative S(1) state potential energy surface.  相似文献   

18.
Some applications of collision dynamics in the field of quadrupole mass spectrometry are presented. Previous data on the collision induced dissociation of ions in triple quadrupole mass spectrometers is reviewed. A new method to calculate the internal energy distribution of activated ions directly from the increase in the cross section for dissociation with center of mass energy is presented. This method, although approximate, demonstrates explicitly the high efficiency of transfer of translational to internal energy of organic ions. It is argued that at eV center of mass energies, collisions between protein ions and neutrals such as Ar are expected to be highly inelastic. The discovery and application of collisional cooling in radio frequency quadrupoles is reviewed. Some previously unpresented data on fragment ion energies in triple quadrupole tandem mass spectrometry are shown that demonstrate directly the loss of kinetic energy of fragment ions in the cooling process. The development of the energy loss method to measure collision cross sections of protein ions in triple quadrupole instruments is reviewed along with a new discussion of the effects of inelastic collisions in these experiments and related ion mobility experiments.  相似文献   

19.
Internal energy deposition into iron pentacarbonyl positive ions undergoing surface-induced dissociation (SID) in a Fourier transform mass spectrometer is estimated from the abundances and known critical energies of the product fragment ions. A narrow energy distribution, comparable to that reported in earlier BQ and tandem quadrupole SID studies of the same compound, is observed. As judged by the ratio of fragment ions to incident parent ions observed, SID of iron pentacarbonyl in the 3 T Fourier transform mass spectrometer is more efficient, but results in lower conversion of laboratory to internal energy. This may be a result of the more shallow collision incidence angle employed in the Fourier transform mass spectrometer measurements (a few degrees), which contrasts with the 32–60° collision angles used in the earlier BQ and tandem quadrupole mass spectrometry studies. Collision-induced dissociation with He under single collision conditions is also reported, Not unexpectedly, conversion of kinetic to internal energy was lower than found in a previous Fourier transform mass spectrometer study of the iron pentacarbonyl cation employing argon as collision gas under multiple collision conditions.  相似文献   

20.
Collisions of fullerene ions (C(60) (+)) with helium and neon were carried out over a range of laboratory energies (3-20 keV) on a unique tandem time-of-flight (TOF/TOF) mass spectrometer equipped with a curved-field reflectron (CFR). The CFR enables focusing of product ions over a wide kinetic energy range. Thus, ions extracted from a laser desorption/ionization (LDI) source are not decelerated prior to collision, and collision energies in the laboratory frame are determined by the source extraction voltages. Comparison of product ion mass spectra obtained following collisions with inert gases show a time (and apparent mass) shift for product ions relative to those observed in spectra obtained by metastable dissociation (unimolecular decay), consistent with impulse collision models, in which interactions of helium with fullerene in the high energy range are primarily with a single carbon atom. In addition, within a narrow range of kinetic energies an additional peak corresponding to the capture of helium is observed for fragment ions C(50) (+), C(52) (+), C(54) (+), C(56) (+) and C(58) (+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号