首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈鹏  都有为 《中国物理》2001,10(10):970-973
The magnetocaloric effect in polycrystalline of Pr1-xSrxMnO3 (x=0.33, 0.43, 0.50) has been investigated. A large magnetic entropy change (7.1J/kgK) was discovered in Pr0.5Sr0.5MnO3 under a low magnetic field of 1T at charge-ordered state transition temperature (161K). The physical mechanism is related to a drastic magnetization change at a temperature where the field-induced magnetic, electron and structural phase transitions occur (from the antiferromagnetic charge-ordered state to the ferromagnetic charge-disordered state).  相似文献   

2.
A decrease in the oxygen content in Nd0.5Ca0.5MnO3?δ down to γ≤0.12 is shown to bring about a strong decrease in the magnetic field inducing a transition from the antiferromagnetic charge-ordered to the ferromagnetic charge-disordered state. The ferromagnetic phase in a Nd0.5Ca0.5MnO2.92 sample is stable in the absence of an external magnetic field. A further increase in the content of oxygen vacancies stabilizes the antiferromagnetic charge-disordered state.  相似文献   

3.
We have made in situ optical microscope observation for the microstructure control driven by magnetic field in Fe-31.2Pd (at%), CoO and Nd0.5Sr0.5MnO3. These materials exhibit structural transitions, and their low-temperature phases are composed of several crystallographic domains (variants), which are separated by twinning planes. In the case of ferromagnetic Fe-31.2Pd and antiferromagnetic CoO, the magnetic field promotes the twinning plane movement. This movement gives a large strain of several percent and is essentially explained by the fact that the magnetic shear stress, which corresponds to the magnetic anisotropy energy divided by the twinning shear, is larger than the twinning stress. In the case of Nd0.5Sr0.5MnO3, the twinned microstructure of the charge-ordered phase disappears under a magnetic field in association with the melting of the charge-ordered phase.  相似文献   

4.
The crystallographic symmetry of the charge-ordered Pr0.5Ca0.5MnO3 manganite is studied at ~98?K using convergent beam electron diffraction technique. These studies have revealed appearance of two different type of charge-ordered phases in different domains of the same grain. These correspond to be monoclinic and triclinic phases. These studies reveal that the symmetry of the charge-ordered phase is highly sensitive to the local strain conditions.  相似文献   

5.
We performed multifrequency electron spin resonance (ESR) on the antiferromagnetic (TN = 160 K) and charge-ordered (T co = 250 K) insulating manganite Nd0.5Ca0.5MnO3. Temperature (4–300 K) and frequency (9.4–285 GHz) dependence of the linewidth, intensity and position of the ESR line were studied. In the paramagnetic state we observe a single Lorentzian absorption line. For a given frequency, the ESR line position is temperature independent (close tog = 1.99). A strong linewidth broadening is observed below Tco. This indicates that there is no magnetic order in the temperature rangeT cos>T >T N but strong antiferromagnetic fluctuations are present. Below TN, due to high-frequency and high-field ESR (up to 12 T) measurements, we were able to observe unexpected lines within the antiferromagnetic gap revealing the presence of a phase separation.  相似文献   

6.
The effects of A-site cation size disorder in ABO3 type charge-ordered and antiferromagnetic Pr0.5Ca0.5MnO3 system have been studied by substituting La3+, Sr2+ or Ba2+, while keeping the valency of Mn ions and the tolerance factor (t=0.921) constant in the substituted compounds. We find that the substitutions by these larger cations induce successive sharp step-like metamagnetic transitions at 2.5 K. The critical field for metamagnetism is the lowest for 3% Ba substituted compound, which has the largest A-site cation size disorder and the least distorted MnO6 octahedra, among the compounds reported here. These cation substitutions give rise to ferromagnetic clusters within antiferromagnetic matrix, indicating phase-separation at low temperatures. The growth of the clusters is found to vary with the substitution amount. The local lattice distortion of MnO6 octahedra enhances the charge ordering temperature and reduces the magnetization at high fields (>1 T) in these manganites.  相似文献   

7.
In this work, we report the theoretical and experimental investigations on the magnetic and magnetocaloric properties for Gd0.5Pr0.5Al2 compound in different magnetic fields. The magnetization features indicate that Gd0.5Pr0.5Al2 is ferrimagnetic at low temperatures. We also present data from X-ray magnetic circular dichroism (XMCD) experiments for this compound, with which we have confirmed that the magnetic moments of the Pr ions are antiparallel to the magnetic moments of the Gd ions. The magnetocaloric parameters, ΔTS and ΔST, were obtained from calorimetric data and both curves present normal and inverse magnetocaloric effect. A theoretical model for ferrimagnetic coupling, including the crystalline electrical field anisotropy, was used to describe the ΔTS and ΔST experimental results.  相似文献   

8.
The effect of high chromium concentrations on the charge and orbital ordering in manganites is studied using neutron diffraction and magnetic measurements. It is found that the Nd0.6Ca0.4Mn0.5Cr0.5O3 manganite exhibits a CE-type antiferromagnetic ordering with a weak ferromagnetic component below 160 K. In the Nd0.6Ca0.4Mn0.5Cr0.5O3 manganite, the Mn and Cr ions form antiferromagnetic zigzag chains that are likewise antiferromagnetically coupled with one another in the basal plane and are arranged along the b axis of the orthorhombic structure with oppositely directed spins. An applied magnetic field of 5 T does not change the magnetic structure.  相似文献   

9.
The magnetic properties of Eu1−x CaxMnO3 have been investigated. As the calcium content increased up to x=0.2, the magnetization and the blocking temperature of the magnetic moments of clusters increased and the magnetic anisotropy decreased. As the calcium content increased further, the magnetization decreased, while the “freezing” temperature of the magnetic moments increased. Anomalies of the magnetic properties were observed in compositions with x=0.4 and 0.5 at T=40 K; these anomalies are attributed to a transition to the antiferromagnetic state in the charge-ordered phase. Fiz. Tverd. Tela (St. Petersburg) 39, 117–120 (January 1997)  相似文献   

10.
The magnetic properties of Ca-doped Nd0.5Sr0.5MnO3 have been studied by electron spin resonance (ESR) and dc magnetization measurements. The antiferromagnetic order and charge order are found to occur separately at TN=200 K and Tco=150 K, respectively. Compared to the undoped Nd0.5Sr0.5MnO3, the ferromagnetic correlations are suppressed by doping of the small Ca2+ ion. In addition, the antiferromagnetic transition temperature is enhanced to 200 K, which can be explained by an increase of superexchange interaction between Mn3+ and Mn4+ ions as their distance decreases.  相似文献   

11.
Thin films of the charge-ordered (CO) compound Pr0.5Ca0.5MnO3 have been grown by utilizing the Pulsed Laser Deposition technique. Films are deposited onto LaAlO3 and SrTiO3 substrates in order to check the effect of strains (compression and tensile). Using various techniques of characterization, we show that the strains of substrate influence the lattice parameters, the orientation of the orthorhombic structure, the transport properties and the stability of the CO state.  相似文献   

12.
The phenomenon of destabilization of antiferromagnetic insulating state into a ferromagnetic metallic one in Nd0.5Sr0.5MnO3 with the variation of particle/grain size is critically investigated. Based on our neutron diffraction study, magnetic and transport experiments, we observe ferromagnetism and metallic behavior in Nd0.5Sr0.5MnO3 (∼40 nm grain size) as against A-type antiferromagnetic order in the sample with the largest grain size (∼800 nm). The latter shows a systematic change in the lattice parameters with temperature, and an antiferromagnetic ground state similar to that of a bulk system. Interestingly, the sample with the smallest grain sizes exhibits insignificant structural changes (compared to the largest grain size sample) but a complete change in the magnetic state (ferromagnetic behavior) as revealed from the neutron diffraction study. Magnetic measurements also confirm a ferromagnetic state in the small-grained sample. Electronic transport measurements exhibit a metal-insulator transition in this sample. The effects are primarily attributed to enhanced surface disorder.  相似文献   

13.
Motivated by recent experimental results, we study the effect of size reduction on half-doped manganite, La(0.5)Ca(0.5)MnO(3), using the combination of density-functional theory (DFT) and dynamical mean-field theory (DMFT). We find that upon size reduction the charge-ordered antiferromagnetic phase, observed in bulk, is destabilized, giving rise to the stability of a ferromagnetic metallic state. Our theoretical results, carried out on a defect-free nanocluster in isolation, establish the structural changes that follow upon size reduction to be responsible for this. Our study further points out the effect of size reduction to be distinctively different from application of hydrostatic pressure. Interestingly, our DFT+DMFT study additionally reports the correlation-driven stability of the charge-orbitally ordered state in bulk La(0.5) Ca(0.5) MnO(3), even in the absence of long-range magnetic order.  相似文献   

14.
Magnetic and electrical properties of well-characterized Gd0.5Ba0.5CoO2.9 have been studied carefully in order to compare them with those of other analogous cobaltates of the type Ln0.5A0.5CoO3 (Ln=La, Nd and A=Sr, Ba) which are ferromagnetic. The results show that Gd0.5Ba0.5CoO2.9, which has A-site cation ordering at room temperature, does not become a genuine ferromagnet at low temperatures, but the ferromagnetic interactions observed at 280 K give over to an antiferromagnetic (AFM) state on cooling to 230 K. The AFM state is rendered ferromagnetic on the application of high magnetic fields. The properties can be understood on the basis of phase separation induced by the large A-site cation-disorder, arising from the size mismatch.  相似文献   

15.
We present results of an electron paramagnetic resonance (EPR) study of Nd1−xSrxMnO3 with x=0.5 across the paramagnetic to ferromagnetic, insulator to metal transition at 260 K (Tc) and the antiferromagnetic, charge ordering transition (TN=Tco) at 150 K. The results are compared with those on Nd0.45Sr0.55MnO3 which undergoes a transition to a homogeneous A-type antiferromagnetic phase at TN=230 K and on La0.77Ca0.23MnO3 which undergoes a transition to coexisting ferromagnetic metallic and ferromagnetic insulating phases. For x=0.5, the EPR signals below Tc consist of two Lorentzian components attributable to the coexistence of two phases. From the analysis of the temperature dependence of the resonant fields and intensities, we conclude that in the mixed phase ferromagnetic and A-type antiferromagnetic (AFM) phases coexist. The x=0.55 compound shows a single Lorentzian throughout the temperature range. The signal persists for a few degrees below TN. The behaviour of the A-type AFM phase is contrasted with that of the two ferromagnetic phases present in La0.77Ca0.23MnO3. The comparison of behaviour of A-type AFM signal observed in both Nd0.5Sr0.5MnO3 and Nd0.45Sr0.55MnO3 with the two FM phases of La0.77Ca0.23MnO3, vis-à-vis the shift of resonances with respect to the paramagnetic phases and the behaviour of EPR intensity as a function of temperature conclusively prove that the Nd0.5Sr0.5MnO3 undergoes phase separation into A-type AFM and FM phases.  相似文献   

16.
We report the magnetocaloric effect in the metamagnetic compound Gd2In obtained from magnetization measurement. Gd2In was previously reported to have two magnetic transitions: (i) a paramagnetic to ferromagnetic transition below 190 K and (ii) a ferromagnetic to an antiferromagnetic state below 105 K. The low temperature antiferromagnetic state is unstable under an applied magnetic field and undergoes metamagnetic transition to a ferromagnetic like state. We observe conventional positive magnetocaloric effect (the magnetic entropy change, ΔSM<0) around 190 K at all applied fields. The magnetocaloric effect is found to be inverse (negative) at low fields around 105 K (ΔSM>0), however it turns positive at higher fields (ΔSM<0). The observed anomaly is found to be related to the field induced transition which drives the system from an antiferromagnetic to a ferromagnetic state.  相似文献   

17.
By studying the magnetic and magnetoelastic properties, it is established that, as the temperature is lowered, Sm1?xSrxMnO3 single crystals (x=0.5, 0.55) undergo spontaneous phase transitions from the paramagnetic to a local charge-ordered state at Tco=220 K and to an A-type antiferromagnetic state at TN=175 K. It is shown that strong magnetic fields (Hcr ~ 200 kOe) break up the antiferromagnetic order and charge ordering and drive a phase transition to a conducting ferromagnetic state. H-T phase diagrams are constructed for single crystals with x=0.5 and 0.55.  相似文献   

18.
The Fe0.5TiSe2 compound with a monoclinic crystal structure has been prepared by intercalation of Fe atoms between Se-Ti-Se sandwiches in the layered structure of TiSe2. The crystal and magnetic structures, electrical resistivity, and magnetization of the Fe0.5TiSe2 compound have been investigated. According to the neutron diffraction data, the Fe0.5TiSe2 compound has a tilted antiferromagnetic structure at temperatures below the Néel temperature of 135 K, in which the magnetic moments of Fe atoms are antiferromagnetically ordered inside layers and located at an angle of approximately 74.4° with respect to the layer plane. The magnetic moment of Fe atoms is equal to (2.98 ± 0.05)μB. The antiferromagnetic ordering is accompanied by anisotropic spontaneous magnetostrictive distortions of the crystal lattice, which is associated with the spin-orbit interaction and the effect of the crystal field.  相似文献   

19.
Temperature dependences (77–300 K) of the thermal capacity, diffusion, and conductivity are investigated for the Nd 0.5 Sr 0.5 MnO 3 and Nd 0.55 Sr 0.45 MnO 3 polycrystalline samples. The examined characteristics show anomalous behavior in the magnetic phase transition and transition to the charge-ordered state. It is demonstrated that the main reason for a sharp decrease in the thermal conductivity during Nd 0.5 Sr 0.5 MnO 3 transition into the antiferromagnetic charge-ordered state is a change in the phonon spectrum caused by the lattice compression. A temperature dependence of the free phonon path is calculated for the examined temperature interval based on the thermal diffusion obtained and the literature data on the sound propagation velocity. __________ Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 4, pp. 72–75, April, 2007.  相似文献   

20.
The anion deficient cobaltite La0.5Ba0.5CoO2.8 with theformal cobalt valence state close to 3+ has been studied as function of pressure up to6.5 GPa at different temperatures by neutron powder diffraction. At ambient pressure thecrystal structure of this compound has cubic symmetry (space group Pm3?m) and is found to become antiferromagnetic withT N close to 250 K. Applied pressure inducesa gradual transition from the antiferromagnetic into a ferromagnetic state through a mixedmagnetic state. The transition is not accompanied by obvious changes in the macroscopiccrystal symmetry. It is suggested that the magnetic ground state strongly depends on theunit cell volume and that the transition is associated with a spin state crossover of thecobalt ions whereas the formal Co3+/Co4+ ratio is less importantthan expected following the double exchange scenario for the appearance offerromagnetism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号