首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In an attempt to determine the reaction mechanism of the Diels-Alder type cycloaddition reaction of benzocyclobutene with dienophiles, the stabilities for the assumed intermediate structures were examined by using MINDO/3, STO-3G, and 4-31G methods. The potential energies of the ring-opening reaction of the benzocyclobutene and cycloaddition reaction of quinodimethane with a dienophile were obtained by MINDO/3 and discussed in relation to the controversial reaction mechanism of the cycloaddition, concerted vs stepwise mechanisms. The results lead to a conclusion that the reaction involves a biradical intermediate followed by a stepwise cycloaddition.  相似文献   

2.
A cascade carbonylative ring expansion and [2+2]/[4+2] cycloaddition of strained 1-iminylphosphirane complexes with aryl allenes were reported.The carbonylative ring expansion of 1-iminylphosphirane complexes provides an azaphosphacyclohexone complex intermediate with a C=P double bond.The following [2+2] or dearomatic [4+2] cycloaddition of this intermediate with allenes is modulated by the aryl substituents on the imino carbon.The regioselective [2+2] cycloaddition with 1,1-diarylallene provides an entry to bicyclo[4.2.0]octan-4-one skeletons featuring a four-membered phosphacyclobutane moiety.While dearomatic [4+2] cycloaddition was preferred with less aromatic naphthalene and yielded octahydrochrysene skeleton containing heteroatoms.  相似文献   

3.
The mechanisms of the cycloaddition reaction of singlet GeX2(X=F,Cl) with formaldehyde was studied employing the HF/6-311+G theory. The electron-correlation corrections have been further considered by the fourth-order Muller-Plesset perturbation theory (MP4SDTQ/6-311+G). The results show that this reaction proceeds in two steps: ① Difluorogemylene and formaldehyde form an intermediate complex, which is a barrierless exothermal reaction; ② the intermediate complex isomerizes to form the product, which is a rate-control step in the whole reaction. In the second step, the calculated barrier heights are 216.7 and 196.4 kJ/mol before and after considering electron-correlation effects. Compared with that of the cycloaddition reaction of difluorosilylene with formaldehyde, the cycloaddition reaction of difluorogemylene with formaldehyde is relatively slow, whereas the cycloaddition reaction of dichlorogemylene with formaldehyde can be comparable in speed.  相似文献   

4.
The molecular mechanism of the domino inter [4 + 2]/intra [3 + 2] cycloaddition reactions of nitroalkenes with enol ethers to give nitroso acetal adducts has been characterized using density functional theory methods with the B3LYP functional and the 6-31G basis set. The presence of Lewis acid catalyst and solvent effects has been taken into account to model the experimental environment. These domino processes comprise two consecutive cycloaddition reactions: the first one is an intermolecular [4 + 2] cycloaddition of the enol ether to the nitroalkene to give a nitronate intermediate, which then affords the final nitroso acetal adduct through an intramolecular [3 + 2] cycloaddition reaction. The intermolecular [4 + 2] cycloaddition can be considered as a nucleophilic attack of the enol ether to the conjugated position of the nitroalkene, with concomitant ring closure and without intervention of an intermediate. For this cycloaddition process, the presence of the Lewis acid favors the delocalization of the negative charge that is being transferred from the enol ether to the nitroalkene and decreases the activation energy of the first cycloaddition. The [4 + 2] cycloaddition presents a total regioselectivity, while the endo/exo stereoselectivity depends on the bulk of the Lewis acid used as catalyst. Thus, for small Lewis acid catalyst, modeled by BH(3), the addition presents an endo selectivity. The [3 + 2] cycloaddition reactions present an total exo selectivity, due to the constraints imposed by the tether. Inclusion of Lewis acid catalyst and solvent effects decrease clearly the barrier for the first [4 + 2] cycloaddition relative to the second [3 + 2] one. Calculations for the activation parameters along this domino reaction allow to validate the results obtained using the potential energy barriers.  相似文献   

5.
MNDO-PM3 calculations, carried out on an experimentally determined structure of an intermediate in the cycloaddition of an electrophilic azide and a nucleophilic 1,3-dipolarophile, show that the semiempirical MO scheme models this structure closely. Transition structures for formation of the intermediate and ring closure of the latter are described.  相似文献   

6.
Theoretical calculations were performed to investigate the mechanism and enantioselectivity of cinchonine–thiourea‐catalyzed intramolecular hetero‐Diels–Alder cycloaddition of ethynylphenol derivatives to afford axial chirality naphthalenylpyran products via a vinylidene ortho‐quinone methide (VQM) intermediate. The results show that this transformation occurs through a reaction pathway involving the deprotonation of the naphthol moiety by the quinuclidine base, intramolecular proton transfer in ammonium naphthalenolate, and [4+2] cycloaddition. It is found that the axial chirality of the VQM intermediate is generated by the protonation step, which affects the enantioselectivity of the reaction. The enantioselectivity for the generation of the VQM intermediate is controlled by steric repulsion with the cinchonine framework, which provides an R‐axial chirality VQM as the major intermediate. Moreover, the enantioselectivity for the axial chirality of the naphthopyran product is controlled by the cycloaddition step, in which an extra hydrogen bond between the naphthalenol and cinchonine moieties leads to a favorable configuration for the generation of the S‐axial chirality naphthopyran product. The calculated enantioselectivity and enantiomeric excesses coincide with experimental observations.  相似文献   

7.
用半经验AM1法研究了C60与单态硅烯环加成反应机理.经Berny梯度法优化得到反应的过渡态,并进行了振动分析确认.计算结果表明:硅烯在C60的66键上的加成反应分两步,第一步反应物生成中间配合物,无势垒;第二步由中间配合物经过渡态变为产物.65键上的加成反应分三步,第一步由反应物生成中间配合物,第二步由中间配合物经过渡态I得到闭环结构的中间体,第三步由中间体经过渡态Ⅱ形成产物.66键加成反应的活化势垒较低,从反应机理和动力学角度解释了66键加成优于65键加成的原因.  相似文献   

8.
用二阶微扰理论研究了单重态亚烷基卡宾与甲醛发生的三种环加成反应的机理 ,采用MP2/6-31G~*方法计算了势能面上各驻点的构型参数、振动频率和能量。根 据能量数据可以预言环加成反应(1)的a途径将是单重态亚烷基卡宾与甲醛环加成 反应的主要反应通道,该反应由两步组成:(I)亚烷基卡宾与甲醛生成了一富能 中间体(INT1a),是一无势垒的放热反应,(II)中间体异构化为产物亚烷基环 乙烷,其势垒为24.1 kJ·mol~(-1)(MP2/6-31G~*)。  相似文献   

9.
用半经验AM1方法研究了C~6~0与单态二氯卡宾环加成反应的反应机理。采用Berny梯度法优化得到反应的过渡态,并进行了振动分析确认。计算结果表明:二氯卡宾在C~6~0的6-6或6-5键上的加成反应均分两步进行,第一步反应物经(类)过渡态Ⅰ生成中间配合物,第二步由中间配合物经过渡态Ⅱ变为产物。6-6加成反应的活化势垒较6-5加成反应的低121kJ·mol^-^1,从反应机理和动力学角度解释了6-6加成优于6-5加成的原因。  相似文献   

10.
Total synthesis of ceratopicanol ( 1 ) was achieved with a tandem cycloaddition reaction of allenyl diazo compound 6 via a trimethylenemethane (TMM) diyl intermediate. The TMM diyl mediated [2+3] cycloaddition reaction furnished the consecutive quaternary carbon centers and showed an unusual diastereoselectivity.  相似文献   

11.
The mechanism of the cycloaddition reaction of forming a silapolycyclic compound between singlet silylidene and formaldehyde has been investigated with MP2/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. The energies of the different conformations are calculated by CCSD(T)//MP2/6-31G* method. From the potential energy profile, it can be predicted that the cycloaddition reaction process of forming the silapolycyclic compound (P2) for this reaction consists of four steps: (I) the two reactants first form a semi-cyclic intermediate INT1a through a barrier-free exothermic reaction of 32.5 kJ mol−1; (II) this intermediate then isomerizes to an active four-membered ring intermediate INT1 via a transition state TS1a with an energy barrier of 30.8 kJ mol−1; (III) INT1 further reacts with formaldehyde to form an intermediate INT2, which is also a barrier-free exothermic reaction of 30.1 kJ mol−1; (IV) INT2 isomerizes to a silapolycyclic compound P2 via a transition state TS2 with a barrier of 50.6 kJ mol−1. Comparing this reaction path with other competitive reaction paths, we can see that this cycloaddition reaction has an excellent selectivity.  相似文献   

12.
A synthesis of the core ABC ring system of the manzamine alkaloids is described, starting from arecoline. The key steps involve a Claisen rearrangement to set up a 4-substituted-3-methylenepiperidine and a stereoselective azomethine ylide dipolar cycloaddition reaction. Condensation of the aldehyde 6 and sarcosine ethyl ester hydrochloride salt gives an intermediate azomethine ylide, which undergoes an intramolecular cycloaddition reaction to set up two new rings and three new chiral centers stereoselectively. The aldehyde 6 was not a suitable substrate for related azomethine ylide cycloaddition reactions with other amines. However, the related dimethyl acetal 26 could be condensed with a variety of amines to give the desired tricyclic products. The cycloaddition reaction with N-methyl or N-allyl glycine ethyl ester gave almost exclusively the exo adduct, whereas cycloaddition with glycine ethyl ester gave the endo adduct.  相似文献   

13.
The total synthesis of (−)‐virosaine A ( 1 ) was achieved in ten steps starting from furan and 2‐bromoacrolein. A one‐pot Diels–Alder cycloaddition/organolithium addition initiated an efficient sequence to access a key oxime/epoxide intermediate. Heating this intermediate in acetic acid resulted in an intramolecular epoxide opening/nitrone [3+2] cycloaddition cascade to construct the caged core of 1 in a single step. Several methods of C−H functionalization were assessed on the cascade product, and ultimately, a directed lithiation/bromination effected selective C14 functionalization, enabling the synthesis of 1 .  相似文献   

14.
卢秀慧  徐曰华  于海彬  林璜 《中国化学》2005,24(10):1339-1342
The mechanism of a cycloaddition reaction between singlet dichloromethylene germylene and ethylene has been investigated with B3LYP/6-31G* method, including geometry optimization and vibrational analysis for the involved stationary points on the potential energy surface. Energies for the involved conformations were calculated by CCSD(T)//B3LYP/6-31G* method. On the basis of the surface energy profile obtained with CCSD(T)// B3LYP/6-31G* method for the cycloaddition reaction between singlet dichloromethylene germylene and ethylene, it can be predicted that the dominant reaction pathway is that an intermediate INT1 is firstly formed between the two reactants through a barrier-free exothermic reaction of 61.7 kJ/mol, and the intermediate INT1 then isomerizes to an active four-membered ring product P2.1 via a transition state TS2, an intermediate INT2 and a transition state TS2.1, in which energy barriers are 57.7 and 42.2 kJ/mol, respectively.  相似文献   

15.
The cycloaddition of ketenes with cyclic carbodiimides yields β-lactams in good to excellent yields. The cycloaddition of equal molar amounts of diphenyl-, phenylethyl- and phenylketenes with cyclic carbodiimides produced a 1:1 cycloaddition product, the expected β-lactams. However, the cycloaddition of a 2:1 molar ratio of diphenyl- and phenylketenes with 1,3-diazacycloocta-1,2-diene respectively, gave the 2:1 cycloadducts, the tricyclodi-β-lactams. The cycloaddition of methylchloro- and dichloroketenes yielded β-lactams that were very susceptible to hydrolysis to the N-substituted cycloureas. A trapping experiment suggests that these reactions proceed through a stabilized dipolar intermediate.  相似文献   

16.
The mechanism of the domino reaction between acetylenedicarboxylic acid and 1,3-bis(2-furyl)propane has been theoretically studied in the framework of density functional theory. This domino process comprises two consecutive cycloaddition reactions: the first one is initialized by the nucleophilic attack of the C5 position of the furan ring to a conjugate position of acetylenedicarboxylic acid to give a zwitterionic intermediate, which by a subsequent ring-closure process affords an oxanorbornadiene intermediate. The second reaction is an intramolecular concerted cycloaddition of this intermediate to give the final dioxapentacyclic adduct. For the second cycloaddition, which corresponds to the step controlling the selectivity, eight alternative reaction pathways are found. Chemoselectivity, facial selectivity, and stereoselectivity of this domino reaction are related with the different approach modes of the tethered furan to the oxanorbornadiene system of the intermediate. The most favorable pathway takes place along an endo/syn approach of the furan ring relative to the bridged oxygen atom of the oxanorbornadiene system, with participation of the substituted double bond. An analysis of energetic contributions to the potential energy barriers for the intramolecular cycloadditions identifies the different factors controlling the reactive channels. Selectivity outcome is reproduced by these calculations.  相似文献   

17.
Strategies for the reductive cycloaddition of enals or enoates with alkynes have been developed. The enal-alkyne cycloaddition directly affords cyclopentenols, whereas the enoate-alkyne cycloaddition affords the analogous cyclopentenones. The mechanism of these processes likely involves formation and protonation of a metallacyclic intermediate. The general strategy provides a straightforward entry to five-membered ring products from simple, stable π-systems.  相似文献   

18.
6-(Nitrileoxidomethyl) penam sulfone intermediate was prepared in a few steps starting from commercially available (+)-6-aminopenicillanic acid. This intermediate underwent smooth 1, 3-dipolar cycloaddition reactions with various alkenes and alkynes to give cycloadducts in moderate to good yields. By this new method, several potent beta-lactamase inhibitors were synthesized. The regio- and stereoselectivity outcomes of the cycloaddition process are also discussed.  相似文献   

19.
An efficient synthesis of peri-hydroxy aromatic compounds has been accomplished via a strong-base-induced [4+2] cycloaddition of homophthalic anhydrides with alpha-sulfinyl-substituted derivatives of enolizable enones. The unsubstituted enones did not undergo an efficient [4+2] cycloaddition reaction with homophthalic anhydrides, presumably due to their enolization under the basic reaction conditions. The sulfinyl group not only promotes the cycloaddition reaction but also undergoes in situ elimination under the reaction conditions to afford the peri-hydroxy aromatic compounds in a single step. The application of this methodology for the synthesis of a key intermediate of antitumor antibiotic fredericamycin A is described. PM3 calculations of various 2-substituted cyclopentenones as well as the mechanism of the cycloaddition are also discussed.  相似文献   

20.
The molecular mechanism for the intramolecular [5 + 2] cycloaddition reaction of beta-silyloxy-gamma-pyrones bearing tethered alkenes has been characterized using ab initio methods. A comparative study for this sort of cycloaddition carried out at different computational levels points out that the B3LYP/6-31G calculations give similar barriers to those obtained with the MP3/6-31G level. Analysis of the energetic results shows that the reaction takes place along a stepwise process: first, the migration of the neighboring silyl group to the carbonyl group of the gamma-pyrone takes place to give a weak oxidopyrylium ylide intermediate, which by a subsequent concerted intramolecular [5 + 2] cycloaddition affords the final cycloadduct. The cycloaddition process is very stereoselective due to the constraints imposed by the tether. The [5 + 2] cycloaddition reaction has a large barrier, and the presence of the silyloxy group and the intramolecular character of the process are necessary to ensure the thermodynamic and kinetic feasibility of these cycloadditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号