首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract—The induction process of UV-enhanced reactivation of UV-irradiated herpes simplex virus was investigated in CV-1 monkey kidney cells. A protein synthesis inhibitor, cycloheximide (0.5–5 μg/m/), present in the culture medium For 24 h between cell irradiation and virus infection decreased the enhanced virus survival normally found in UV-irradiated cultures. The enhanced virus reactivation became essentially resistant to the addition of cycloheximide by 6–8 h after cell irradiation, indicating that the cycloheximide-sensitive process necessary for enhanced reactivation was complete by that time. Since cycloheximide not only inhibits protein synthesis, but DNA synthesis as well, we investigated the effect of a DNA synthesis inhibitor, hydroxyurea. Hydroxyurea did not decrease UV-enhanced virus survival, but resulted in enhanced virus survival even in unirradiated cells. Therefore, the cycloheximide-caused inhibition of UV-enhanced reactivation did not arise from inhibition of DNA synthesis. The combined results indicate that (1) UV-enhanced virus reactivation in monkey kidney cells requires de novo protein synthesis during the first 6–8 h after cell irradiation and that (2) DNA synthesis inhibition may be the initiating event.  相似文献   

2.
Abstract Treatment of mammalian cells with certain chemical or physical carcinogens prior to infection with ultraviolet-irradiated virus results in enhanced survival or reactivation of the damaged virus. To investigate the molecular basis of this enhanced reactivation (ER), we have examined Simian virus 40 DNA replication in carcinogen-treated cells. We find that treatment of monkey kidney cells with N-acetoxy-2-acetylamino-fluorene or UV radiation 24 h prior to infection with ultraviolet-irradiated Simian virus 40 leads to enhancement of viral DNA replication measured at 36 h after infection by [3H]thymidine incorporation or hybridization. The enhancement of DNA replication is observed when cells are treated from 1 to 60 h before infection or 1 to 16 h after infection. The fact that enhancement is observed also when cells are treated after infection rules out the possibility that enhancement occurs at the level of adsorption or penetration of the virus. Measurements of the time course of viral DNA replication indicate that pretreatment of cells does not alter the time of onset of viral DNA replication. We conclude from these studies that ER of Simian virus 40 occurs at the level of viral DNA replication.  相似文献   

3.
Abstract— Enhanced reactivation of UV- and y-irradiated herpes virus was investigated by the plaque assay onCV–1 monkey kidney monolayer cells irradiated with UV light or X-rays. Both UV- and X-irradiatedCV–1 cells showed enhancement of survival of UV-irradiated virus, while little or no enhancement was detected for y-irradiated virus assayed on UV- or X-irradiated cells. The enhanced reactivation of UV-irradiated virus was greater when virus infection was delayed 24 or 48 h, than for infection immediately following the irradiation of cells. It is demonstrable that the UV- or X-irradiatedCV–1 cells are able to enhance the repair of UV damaged herpes virus DNA, but not of y-ray damaged ones.  相似文献   

4.
Abstract— It has been reported that caffeine decreases UV-enhanced reactivation of UV-irradiated Herpes simplex virus in CV-1 monkey kidney cells. That occurred when there was no delay between cell irradiation and virus infection. In the present study, virus infection was delayed following cell irradiation to allow an 'induction'period separate from the 'expression'period which occurs during the virus infection. Thus, the effects of caffeine on 'induction'and 'expression'could be determined separately. Caffeine increased the expression of UV-enhanced reactivation, while causing a small decrease in the 'induction'of enhanced reactivation.  相似文献   

5.
— Herpes simplex virus — type 1 (HSV-I) plaque-forming ability and plaque size were measured on C3H/1OT1/2 cell monolayers as functions of pretreatment dose with UV light at different times before inoculation with virus, in order to determine if UV-enhanced reactivation (ER) of UV-irradiated virus. as well as associated phenomena, could be obtained in this cell system. The number of virus plaques observed (i.e. the capacity of the cells to support virus growth) and the size of the plaques were found to increase substantially with pretreatment of the cells with UV light. However, no significant ER was observed. Therefore, the mechanisms responsible for the increases in plaque size and cell capacity seem to be independent of those responsible for ER. In work by others. C3H/l0T1/2 cells have hcen transformed by UV light at doses similar to those used in this study; the absence of ER of UV-irradiated virus in this study indicates that the mechanism underlying ER is not required for transformation.  相似文献   

6.
Abstract— Does host cell reactivation (HCR) or UV-enhanced reactivation (UVER) of UV-irradiated Herpes simplex virus (UV-HSV) vary during the host mammalian cell cycle? The answer could be useful for interpreting UVER and/or the two-component nature of the UV-HSV survival curve. Procedures were developed for infection of mitotically-synchronized CV-1 monkey kidney cells. All virus survival curves determined at different cell cycle stages had two components with similar D0's and intercepts of the second components. Thus, no single stage of the host cell cycle was responsible for the second component of the virus survival curve. When the cells were UV-irradiated immediately prior to infection, enhanced survival of UV-HSV occurred for cell irradiation and virus infection initiated during late G1/early S phase or late S/early G2 phase but not during early G1 phase. For infection delayed by 24 h after cell irradiation, UVER was found at all investigated times. These results indicate that: (1) HCR is similar at all stages of the host cell cycle; and (2) the “induction” of UVER is not as rapid for cell-irradiation in early G1 phase. This latter observation may be one reason why normal, contact-inhibited cells do not express UVER as rapidly as faster growing, less contact-inhibited cells.  相似文献   

7.
Abstract— Herpes simplex virus (HSV) macroplaque strain plaque development is faster on ultraviolet (UV)-irradiated African green monkey kidney cells if viral infection is delayed for 12 h or more after cell irradiation (Coohill et al. , 1980). This phenomenon has been termed the large plaque effect (LPE). Here we show that treatment of UV-irradiated cells with cycloheximide inhibits the LPE. Pretreatment of unirradiated cells with hydroxyurea, caffeine, or acetoxy-acetylaminofluorene results in faster plaque development. Treatment of UV-irradiated cells with either hydroxyurea or caffeine gave a LPE of the same magnitude as UV alone. In addition, the LPE was observed with other HSV strains—microplaque, syn-20, and KOS. Our results are consistent with the interpretation that the LPE is 'inducible' in African green monkey kidney cells and that inhibition of DNA synthesis is the inducing event. Possible causes of the LPE and similarities between the LPE and enhanced viral reactivation are discussed.  相似文献   

8.
C3H/10T1/2 mouse fibroblasts were grown to different cell densities either by plating at low density and allowing different growth periods, or by plating at a series of increasing densities and allowing the same growth period. These plates were UV irradiated at 7.5 J/m2 or mock irradiated and 24 h later infected with UV-irradiated Herpes simplex type I virus which had been UV irradiated at 50 or 125 J/m2 or mock irradiated. The numbers and sizes of plaques were measured and these data used to calculate the extent of UV-enhanced host cell reactivation, the capacity enhancement, the large plaque effect (LPE) and the small plaque effect (SME). The influence of cell density on these phenomena was similar for both series of density experiments. Ultraviolet-enhanced host cell reactivation could be demonstrated only for cultures of lower density. The capacity of the cells for Herpes simplex type I virus decreased with cell density, but UV irradiated cells showed an increase in capacity with cell density. Plaque sizes decreased in all cases with cell density but the LPE and SPE were not significantly altered. The greatest variation in the above parameters occurred just as the cells were approaching confluence, where most host cell reactivation experiments are carried out. We conclude that the reproducibility of such experiments depends critically on cell density, a dependence which may be relevant to mechanistic interpretations of the UV-dependent phenomena.  相似文献   

9.
Abstract— When CV-1 monkey kidney cells were UV-irradiated (0–18 J/m2) or X-irradiated (0–10krads) before infection with UV-irradiated simian adenovirus 7 (SA7) or simian virus 40 (SV40), increases in the infectivity of these nuclear replicating viruses as measured by plaque formation were observed. These radiation enhanced reactivations, UV enhanced reactivation (UVER) and X-ray enhanced reactivation (X-ray ER), occurred both when virus infection immediately followed irradiation of the cells (except for X-ray ER with SA7) and when virus infection was delayed until 3–5 days after cell irradiation. While there was little difference in the levels of reactivation of UV-irradiated SV40 between immediate and delayed infection, delayed infection resulted in higher levels of reactivation of SA7. X-ray enhanced reactivation of UV-irradiated Herpes simplex virus persisted for several days but did not increase. Thus, X-ray enhanced and UV enhanced reactivations of these mammalian viruses were relatively long-lived effects. Essentially no UVER or X-ray ER was found in CV-1 cells for either immediate or delayed infection with UV-irradiated vaccinia virus or poliovirus, both of which replicate in the cell cytoplasm. These results suggest UVER and X-ray ER in mammalian cells may be restricted to viruses which are replicated in the cell nucleus.  相似文献   

10.
–Cockayne syndrome (CS) is an autosomal recessive disease characterized by numerous clinical abnormalities including acute sun sensitivity and primary pigmentary degeneration of the retina. Cultured fibroblasts from CS patients are hypersensitive to ultraviolet (UV) radiation. Since host cell reactivation of irradiated virus is a useful probe to evaluate repair in different host cells, we studied such host cell reactivation in CS and in other diseases with retinal degeneration. The survival of UV-irradiated Herpes simplex virus type 1 was determined in fibroblast lines from four normal donors. two patients with CS, one with both xeroderma pigmentosum (XP) and CS, and from several other patients with (Usher syndrome, olivopontocerebellar atrophy, retinitis pigmentosa) and without (XP, ataxia telangiectasia) primary pigmentary degeneration of the retina. The viral survival curves (log survival vs linear fluence) in all cell lines showed two components: a very sensitive initial component (not quantitated in this study) followed by an exponential, less sensitive component. The exponential component had greater sensitivity than normal in the case of the CS patients, the patient with both XP and CS. and the XP patient. We propose that patients with CS have defective repair of DNA which may be the cause of their retinal degeneration.  相似文献   

11.
12.
13.
Abstract— UV-induced alkaline labile viral DNA damage was detected following irradiation of adenovirus type 2 and found to be repaired following the infection of human KB cells. Human adenovirus type 2 was irradiated with various doses of UV and subsequently used to infect human KB cells in tissue culture at approximately 2 × 103 particles per cell. Before, and at various times after infection, the viral DNA was examined on alkaline sucrose gradients. Irradiated free virus DNA showed a dose dependent decrease in molecular weight compared to unirradiated virus DNA, indicating the presence of UV-induced alkaline labile lesions. Furthermore, an increase in the molecular weight of the irradiated virus DNA was found after infection indicating that alkaline labile lesions were removed from the viral DNA by a host mediated repair mechanism. After infection, the molecular weight of the irradiated virus DNA reached a value similar to that of unirradiated virus DNA for all the UV doses studied.  相似文献   

14.
Abstract— The survival of UV-irradiated herpes simplex virus was determined in cultured Potoroo (a marsupial) and human cells under lighting conditions which promote photoreactivation. Photoreactivation was readily demonstrated for herpes virus in two lines of Potoroo cells with dose reduction factors of 0.7-0.8 for ovan cells and 0.5-0.7 for kidney cells. Light from Blacklite (near UV) lamps was more effective than from Daylight (mostly visible) lamps, suggesting that near UV radiation was more efficient for photoreactivation in Potoroo cells. The quantitative and qualitative aspects of this photoreactivation were similar to those reported for a similar virus infecting chick embryo cells. UV-survhal curves for herpes virus in Potoroo cells indicated a high level of "dark" host cell reactivation. No photoreactivation was found for UV-irradiated vaccinia virus in Potoroo cells. A similar photoreactivation study was done using special control lighting (Λ > 600 nm) and human cells with normal repair and with ceils deficient in excision repair (XP). No photoreactivation was found for UV-irradiated herpes virus in either human cell with either Blacklite or Daylight lamps as the sources of photoreacti-vating light. This result contrasts with a report of photoreactivation for a herpes virus in the same XP cells using incandescent lamps.  相似文献   

15.
Abstract— Murine cytomegalovirus, a herpes virus, was used as a model virus to investigate the mechanism of the anti-viral action of phenylheptatriyne in long wave ultraviolet light. The genome and proteins of the inactivated virus penetrated the nuclei of susceptible cells normally. Furthermore, the viral genome did not contain extra single strand breaks or cross-links. However, cells infected with the treated virus did not synthesize late viral proteins, as determined by polyacrylamide gel electrophoresis. nor did they synthesize late viral RNA and viral DNA according to nucleic acid hybridization tests. Thus the compound may interfere with an early viral function so that the replication cycle cannot proceed.  相似文献   

16.
Abstract— Continuous DNA degradation and resynthesis, without a net change in cellular DNA content, were observed in buffer-held, non-irradiated E. coli B/r. This constant DNA turnover probably involves most of the genome and reflects random sites of DNA repair due to the polA-dependent excision-resynthesis repair pathway. Under these non-growth conditions, it appears that at any given time there is a minimum of one repair site per 6.5 × 106 daltons DNA, each of which is at least 160 nucleotides long.
While the amount of DNA degradation is not influenced by prior exposure to UV radiation, the synthetic activity decreases with increasing UV fluence. We suggest that when sites of DNA turnover occur opposite to cyclobutyl dipyrimidines in UV-irradiated cells, repair of the latter damage can be prevented. This implies that both beneficial and deleterious processes take place in irradiated buffer-held cells, and that cell survival depends on the delicate balance between DNA turnover and repair of UV-damage. Based on these findings, we propose a model to explain the limited repair observed during post-irradiation liquid-holding and to account for the large difference in cell survival between irradiation at low fluence rates (fluence-rate dependent recovery) and at high fluence rates followed by liquid-holding (liquid-holding recovery).  相似文献   

17.
Abstract— Ultraviolet (UV)-irradiated Escherichia coli K–12 uvrA cells showed higher survival if plated on minimal growth medium rather than on rich growth medium, i.e., they showed minimal medium recovery (MMR). A 2-hour treatment of UV-irradiated cells with rifampicin inhibited the subsequent expression of MMR, and produced a large reduction in survival. We have recently isolated a new mutant ( mmrA1 ) that does not show MMR. The mmrA mutation protected UV-irradiated uvrA cells from the effect of rich growth medium on survival, but not from the effect of rifampicin on survival. DNA daughter-strand gap (DSG) repair in UV-irradiated (4 J/m2) uvrA cells was inhibited to the same degree whether rich growth medium was added immediately after irradiation or after 10 min of postirradiation incubation in minimal growth medium. However, chloramphenicol added immediately after irradiation greatly reduced this repair; there was less reduction if it was added 10 min after UV irradiation. These findings suggest that MMR is an inducible repair phenomenon, and that rich growth medium inhibits this repair process itself rather than its induction.  相似文献   

18.
The degree of ultraviolet enhanced reactivation (UVR) exhibited by mammalian cells when infected with Herpes simplex virus inactivated by different wavelengths of far ultraviolet (UV) radiation was measured. A wavelength dependence for this effect is presented over the wavelength region 238–297 nm. Within the limits of the deviations obtained, the degree of UVR exhibited is similar at each wavelength. This suggests that virus irradiated with different wavelengths of UV radiation received the same type of damage or that cells repaired the different types of viral damage with the same efficiency.  相似文献   

19.
Abstract— The effect of UV radiation in the wavelength region 230 nm to 302 nm on the ability of an irradiated mammalian cell to reactivate UV-irradiated mammalian virus was tested. An action spectrum for radiation enhanced reactivation (RER) is presented. The shape of the action spectrum points to a combined nucleic acid-protein target for UV radiation effects on this cellular parameter. An analysis of the results of others involving the biochemical and photobiological events involved in RER does not allow us to distinguish which macromolecule is the major contributor to this effect. Studies involving an analogous phenomenon in bacteria (Weigle reactivation) imply that RER and WR may involve similar mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号