首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 265 毫秒
1.
土壤水分对近红外光谱实时检测土壤全氮的影响研究   总被引:4,自引:0,他引:4  
利用近红外光谱技术实时预测土壤全氮含量是精细农业的研究热点之一,但是由于土壤水分在近红外波段的吸收系数较高,影响了土壤全氮含量的实时预测精度。使用布鲁克MATRIX_I傅里叶近红外光谱分析仪对不同土壤水分的土壤样本进行了近红外光谱扫描,定性和定量的分析了土壤水分对近红外光谱的影响,并提出了一种消除土壤水分对土壤全氮含量预测影响的方法。近红外光谱扫描结果显示在同一全氮含量水平下,随着土壤水分含量的增加,光谱吸光度呈逐渐上升的趋势,且变化趋势为非线性。通过对1 450和1 940 nm两个水分吸收波段的差分处理,设计了水分吸收指数MAI(moisture absorbance index),再对土壤按照水分含量梯度进行分类,提出了相应的修正系数。修正后的6个土壤全氮特征波段处(940,1 050,1 100,1 200,1 300和1 550 nm)的土壤吸光度值作为建模自变量,使用BP神经网络建立了土壤全氮预测模型,模型的RC,RV,RMSEC,RMSEP和RPD分别达到了0.86,0.81,0.06,0.05和2.75;与原始吸光度所建模型相比较模型精度得到了显著提高。实验结果表明本方法可以有效地消除土壤水分对近红外光谱检测土壤全氮含量预测的影响,为土壤全氮含量实时预测提供了理论和技术支持。  相似文献   

2.
近红外光谱技术结合RCA和SPA方法检测土壤总氮研究   总被引:1,自引:0,他引:1  
基于近红外光谱技术结合连续投影算法和回归系数分析对检测土壤总氮含量进行研究。采集农田土壤样本近红外光谱数据,土壤样本数量共394个。由于原始光谱数据量大,在500~2 500 nm光谱波长范围基础上,为简化模型,在原始光谱基础上采用连续投影算法和回归系数分析提取特征变量,以两种变量选择方法提取的特征变量作为输入,分别采用偏最小二乘回归(PLS)、 多元线性回归(MLR)和最小二乘支持向量机(LS-SVM)建模方法建立总氮预测模型,共建立了9个预测模型,最优预测集的决定系数为0.81,剩余预测偏差RPD为2.26。研究表明,基于连续投影算法和回归系数分析选择的特征波长可以应用于近红外光谱检测土壤总氮含量,同时可以大大简化模型,适合开发便携式土壤养分检测仪。  相似文献   

3.
基于近红外光谱技术的土壤参数BP神经网络预测   总被引:13,自引:1,他引:12  
利用BP神经网络预测方法,建立了基于近红外光谱技术的土壤有机质含量和土壤全氮含量的分析模型。试验共测量了150个田间土壤样本的近红外光谱,首先采用局部加权散点图平滑滤波法对光谱曲线进行了平滑处理,然后根据对目标参数进行的聚类分析结果进一步平均了输入光谱,最后将反射光谱数据进行对数转换后与目标数据一起进行了归一化处理。对预处理后的光谱数据首先进行主成分分析,然后提取贡献率超过99.98%的主成分建立BP神经网络模型。对土壤有机质含量的分析结果:模型拟合精度为0.999,预测精度达到0.854。对于土壤全氮含量的分析结果:模型的拟合精度近似为1,预测精度达到了0.808。研究表明,基于近红外光谱技术的土壤参数BP神经网络预测模型具有较高的鲁棒性和较强的容错能力。  相似文献   

4.
土壤粒度对基于近红外离散波长土壤全氮预测精度影响   总被引:2,自引:0,他引:2  
土壤粒度是对土壤近红外光谱造成严重干扰的主要因素之一。通常在样本前处理阶段采用研磨和过筛土壤来降低土壤粒度干扰,在数据处理阶段通过对连续光谱微分法等数学方法消除土壤粒度干扰。但是对于近红外波段离散波长的建模,至今没有有效的方法消除土壤粒度干扰。为此,提出了土壤粒度修正法以解决土壤粒度干扰消除难题。首先建立土壤粒度修正模型,将农田采集的标准土壤在实验室烘干消除水分后,进行土样配置,得到4个土壤粒度(2.0, 0.9, 0.45, 0.2 mm)和6个全氮浓度等级(0, 0.04, 0.08, 0.12, 0.16, 0.2 g·kg-1)的96个土壤样本。采用MATRIX-Ⅰ型傅里叶变换近红外光谱仪采集土壤样本近红外光谱,计算四个不同粒度(每个粒度包含24个土壤样本)和全部土壤样本在每个波长处(850~2 500 nm)所有样本间吸光度的光谱标准偏差,分析得到土壤粒度的特征波段为1 361和1 870 nm。采用特征波段吸光度比值作为单一输入变量建立SVM土壤粒度分类模型,土壤粒度整体分类准确率为93.8%,表明对土壤粒度进行分类是可行的。选择本研究团队开发的基于近红外波段离散波长(1 070, 1 130, 1 245, 1 375, 1 550, 1 680 nm)吸光度的车载土壤全氮检测仪对提出的土壤粒度修正模型进行验证。结果表明修正后粒度为2.0,0.9和0.45 mm的吸光度和原始土壤吸光度分别降低了62%,74%,111%和61%。表明土壤粒度修正法可以显著减小土壤粒度干扰。最后采用BPNN建立不同吸光度的全氮模型,相较于原始吸光度模型,修正后的土壤吸光度模型R2v提高了25%。表明提出的土壤粒度修正法可以显著减小土壤粒度对近红外光谱离散波长吸光度的干扰,提高车载土壤全氮检测仪的测量精度。  相似文献   

5.
基于高光谱成像技术的土壤水分机理研究及模型建立   总被引:1,自引:1,他引:0  
为了研究宁夏地区土壤的水分迁移机理以及对土壤水分快速无损检测,利用高光谱成像(光谱范围900~1 700 nm)技术对土壤的含水率进行了研究。通过高光谱成像系统采集了208个土样,比较了不同天数下土壤含水率与光谱的变化、不同质量含水量光谱的差异。对采集到的土样进行PLSR模型建立,对比分析不同光谱预处理方法、不同方法提取特征波长(UVE、CARS、β系数、SPA)、不同建模方法(MLR、PCR、PLSR)建立的模型,优选出最佳模型。结果表明:在一定的土壤含水量范围内,光谱曲线的反射率与土壤含水率成反比;当增大到超过田间持水率时,光谱曲线的反射率与土壤含水率成正比。对比分析了不同预处理方法,优选出单位向量归一化预处理方法。对比不同的模型,优选出SPA提取的特征波长的MLR模型。最优的特征波长为987,1 386,1 466,1 568,1 636,1 645 nm,最优模型的预测相关系数Rp=0.984,预测均方根误差RMSEP为0.631。因此,今后可采用不同波段对土壤含水率进行定量分析。  相似文献   

6.
近红外光谱小波分析在土壤参数预测中的应用   总被引:5,自引:0,他引:5  
从田间采集了150个田间土壤样本,在分析了所有样本的土壤参数统计特征之后,对原始近红外光谱数据进行了聚类分析,分别得到了50个土壤全氮和50个土壤有机质的等价样本及其对应光谱。对样本光谱曲线进行8层Biorthogonal小波包分解,分解得到的最低低频[80]结点对应着土壤水分以及土壤质地的光谱变化趋势,最高高频[8 255]结点对应着土壤粒度、光谱仪精度等引起的高频震荡。对以上两个结点进行重构并从样本光谱曲线中剔除以上影响成分,得到了对应的土壤参数特征光谱。基于特征光谱建立了土壤参数偏最小二乘回归模型:全氮偏最小二乘预测模型的预测系数rc达到了0.960,验证系数rv达到了0.920;有机质偏最小二乘预测模型的预测系数rc达到0.922,验证系数rv达到0.883。模型精度明显提高,满足实际生产的需要。  相似文献   

7.
应用遗传算法结合连续投影算法近红外光谱检测土壤有机质研究。采集浙江省文城地区农田土壤样品近红外光谱数据,土壤样品数为394个。为简化模型,采用遗传算法结合连续投影算法挑选出18个特征波长建模,应用偏最小二乘回归建立有机质预测模型,建模集的决定系数为0.81,均方根预测误差为0.22, 剩余预测偏差为2.31,预测集的决定系数为0.83,均方根预测误差为0.20,剩余预测偏差为2.45。研究发现,遗传算法结合连续投影算法在简化模型同时,模型的预测评价指标同采用全谱波长建模并没有明显降低。因此,遗传算法结合连续投影算法挑选的特征波长可以应用于近红外光谱检测土壤有机质含量。  相似文献   

8.
选取赣南脐橙果园土壤作为研究对象,探讨在4 000~7 500 cm-1范围内的光谱分析土壤全氮和有机质的可行性。采集的近红外光谱采用多元散射校正、一阶微分、二阶微分、七点平滑等多种预处理对比分析,分别建立了有机质和全氮含量偏最小二乘模型。实验得出全氮预测模型在4 000~7 500 cm-1范围内采用七点平滑(SG)进行预处理模型较为理想,校正集相关系数(rc)为0.802,校正均方根误差(RMSEC)为2.754,预测集相关系数(rp)为0.715,预测均方根误差(RMSEP)为3.077;有机质预测模型在4 000~7 500 cm-1范围内采用标准正态变量变换(SNV)预处理模型较为理想,rc为0.848,RMSEC为0.128,rp为0.790,RMSEP为0.152。研究表明近红外漫反射光谱可快速用于赣南脐橙果园的土壤中全氮和有机质含量的快速检测。  相似文献   

9.
可见/近红外光谱技术是土壤成分检测的有效工具。波长筛选对可见/近红外模型土壤属性的预测精度有重要影响。以宁夏吴忠地区75个水稻土样为研究对象,利用可见/近红外光谱技术采集土壤样品光谱,采用SPXY (Sample set partitioning based on joint X-Y distance)方法选取了校正集和预测集样本,比较了分别采用Savitzky Golay平滑(SG smoothing)、多元散射校正(Multiple scatter correction,MSC)、标准正态变量变换(Standard normal variate,SNV)3种预处理方法对光谱数据处理后建立土壤碱解氮偏最小二乘法模型和原始光谱数据建模的效果。在此基础上,分别采用遗传算法(Genetic gorithms,GA)、连续投影算法(Successive projections algorithm,SPA)、竞争性自适应重加权算法(Competitive adaptive reweighted Sampling,CARS)、随机蛙跳(Random frog,RF)进行波长筛选,最后应用偏最小二乘法建立基于不同波长筛选方法的土壤碱解氮含量预测模型。研究表明,由于仪器性能稳定,样品的颗粒度比较小和均匀,本次实验原始光谱数据建模效果最好;各种波长筛选方法均可有效减少参与建模的波长数,且连续投影算法优于全谱建模,所选波长数仅为全谱波长数的1%,其预测决定系数(R2)、预测均方根误差和相对分析误差值分别为0.726,3.616,1.906。这表明连续投影算法可以有效筛选水稻土碱解氮敏感波段,为土壤碱解氮传感器开发提供技术支持。  相似文献   

10.
我国苹果栽培区土壤参数的近红外光谱检测研究   总被引:2,自引:0,他引:2  
在全国11个主要苹果栽培区及其附近农田处,共收集111份土壤样本作为研究对象。使用傅里叶近红外光谱仪采集在12 500~4 000 cm-1光谱范围内的土样漫反射光谱信息,并采用偏最小二乘回归法分别建立土壤有机质含量和pH值的近红外定标模型。为了有效消除土壤颗粒不均匀性所带来的散射影响,同时扣除与土壤品质参数无关的光谱信息,研究运用变量标准化(SNV)、附加散射校正(MSC)和直接正交信号校正(DOSC)等光谱预处理方法,使模型精度得到显著提高。结果显示,经过DOSC处理后,土壤有机质含量和pH值的近红外定标模型效果达到最佳,其相关系数(r)分别达到0.953和0.937,预测误差均方根(RMSEP)分别为0.258(%)和0.248(%)。研究表明,利用近红外光谱技术可以快速检测我国主要苹果栽培区土壤的有机质含量和pH值,为土壤施肥提供指导,为果树栽培提供技术支持。  相似文献   

11.
东北黑土的光谱特性及其与土壤参数的相关性分析   总被引:6,自引:3,他引:6  
选取我国东北黑土作为研究对象,研究其光谱特性并分析黑土主要参数与近红外光谱的相关性。通过比较东北黑土和北方潮土光谱特征的差异,显示当水分含量较高时,两种土壤的光谱特性差别不是很明显,当水分含量较低时,受土壤质地的影响,两种土壤的吸光度光谱及微分光谱均有很大差异。土壤水分值和吸收光谱有很大相关系数,土壤全氮与光谱呈现出了一定的相关性,提高土样全氮含量的方差,可以获得高的相关系数;由于黑土中有机质的含量很高,使基于土壤有机质的光谱吸收达到饱和,二者之间呈现较低的相关性。  相似文献   

12.
土壤有机质是土壤的重要成分,也是农作物生长的重要营养指标.快速、准确检测土壤有机质含量对施肥管理具有重要意义.近年来,近红外光谱被广泛应用于土壤有机质的快速检测,然而土壤有机质敏感波段易受土壤水分干扰,从而会影响到土壤有机质的预测结果.在山西省境内采集了140个土壤样本,采用ASD光谱仪分别获取了不同含水率(0%,5%...  相似文献   

13.
顾及土壤湿度的土壤有机质高光谱预测模型传递研究   总被引:4,自引:0,他引:4  
高光谱遥感技术作为当前遥感发展的前沿科技,通过电磁波与地物的相互作用,可以定量反演地物的物理化学性质。土壤有机质是重要的土壤养分信息参数,利用高光谱遥感技术快速获取其含量信息可以为精准农业的发展提供必要的数据支撑。然而,由于受到外部参数差异的干扰,导致建模精度降低的同时,还会造成已有模型传递性的“失效”。为了消除湿度差异的干扰,进一步拓展已有模型的适用空间,以江汉平原滨湖地区为例,通过对95个土壤样本进行加湿处理,在实验室自然风干的条件下,量测得到13套不同湿度等级土壤样本的可见—近红外反射光谱数据,建立了各湿度等级下土壤有机质的光谱反演模型,研究水分差异对建模精度的影响;在此基础上,运用Direct Standardization(DS)算法对湿土光谱进行校正,进而探讨该算法在提高模型传递性能方面的潜力。结果表明:基于风干土光谱建立的模型预测精度最高,未经校正的湿土光谱无法通过该模型进行土壤有机质含量预测,预测偏差在-8.34~3.32 g·kg-1,RPD在0.64~2.04;经过DS算法校正后的湿土光谱可以通过该模型进行土壤有机质含量预测,预测偏差降低至0,RPD值提高至7.01。研究表明DS算法能有效降低湿度差异对光谱反演土壤有机质的影响,使土壤有机质光谱反演模型适用于不同水分含量的土壤样本。  相似文献   

14.
土壤有机质(SOM)是植物生长必需的营养物质,也是土壤属性检测的重要参数。快速、高效地获取土壤有机质信息对精细农业的发展具有重要意义。近红外光谱技术具有快捷、低成本等优势,被广泛应用到土壤有机质的测量中,然而土壤水分在近红外光谱(780~2 500 nm)中具有很强的吸收特性,对土壤有机质的检测形成了一定的干扰。分析了50个土样在不同含水率(约17%,15%,10%,5%和干土)下的近红外吸光度谱图特性,利用水分敏感波段2 210, 1 415和1 929 nm构建了水分修正系数(MDI),并在此基础上对不同含水率土样进行了重构,以消除水分对土壤有机质预测模型的影响。结果如下:(1)经MDI校正重构后的吸光度谱图与对应的干土土样吸光度谱图相近,能较好地反映其干土土样的吸光度谱图特性。(2)采用偏最小二乘(PLS)法建立了干土土样的有机质定量预测模型,并对重构后的不同含水率土样进行了预测,其统计参数分别为:预测相关系数(RP)0.90,预测标准误差(SEP)0.802和预测均方根误差(RMSEP)1.09;与原始未经MDI校正的预测结果相比,相关系数上升了0.032,预测标准误差降低了0.113,预测均方根误差降低了0.25。结果表明,本研究提出的水分校正算法可以降低水分对土壤有机质预测的干扰,提高利用干土土样有机质定量预测模型预测不同含水率土样的精度,可为基于近红外光谱技术的土壤有机质实时测定技术的推广提供理论依据。  相似文献   

15.
土壤含水量的变化情况与时空分布对热量平衡、农业墒情等具有显著的影响。利用反射率光谱信息反演土壤含水量的研究,可为实现土壤含水量速测、揭示土壤含水量时空变异规律提供科学依据。构建不同含水量黑土土壤反射率光谱半经验模型,深入探究土壤重量含水量与反射率光谱的关系。 制备了12种不同湿度的土壤样品。 采用ASD Field Spec Pro 3地物波谱仪对制备的不同湿度梯度的黑土土壤进行反射率光谱测量。 利用菲涅耳反射率建立土壤表面反射模型;在以往的研究中,Kubelka-Munk (KM)模型中的漫反射率R通常被视为对于给定材料和照明波长的常数或需要反演的参数。通过研究发现,漫反射率R不仅与材料和波长有关,还与土壤含水量相关。利用与土壤含水量相关的吸收系数及散射系数描述了土壤含水量与漫反射率R的关系,并基于KM理论对体散射分量进行建模;进而构建不同含水量黑土土壤反射率光谱半经验模型。 根据实际测量数据选用最小二乘算法对模型参数进行反演,并通过分析反演参数简化模型。最后,将未参与建模的不同含水量梯度的数据代入模型中,验证模型的有效性。结果表明:对比不同含水量土壤反射率光谱的模拟值与实测值在400~2 400 nm波段范围内的模拟精度发现,含水量为200 g·kg-1的土壤反射率光谱的均方根误差最大,为0.008,含水量为40 g·kg-1的土壤反射率光谱的均方根误差最小,为0.000 6,不同含水量下土壤样品反射率光谱的均方根误差的均值是0.005 1。在400~2 400 nm波段范围内,不同波长下黑土土壤反射率光谱的预测均方根误差基本低于0.008,1 920 nm波长处的预测均方根误差最小,为0.002 062。采集长春地区的土壤检验模型的可靠性,配制15个不同含水量样品并对其进行反射率光谱测量。选取9个样品数据用于建模,6个样品数据用于验证。结果表明:在400~2 400 nm波段范围内,不同波长下的长春土壤反射率光谱的预测均方根误差基本低于0.015,525 nm波长处的预测均方根误差最小,为0.000 922 5。综上所述,所建立的模型具有很高的预测精度,可很好地适用于不同含水量黑土土壤反射率光谱的模拟。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号