首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

针对浅海环境中利用单深度接收信号自相关函数的Warping变换方法测距时易出现的多值性问题, 提出一种双深度Warping变换融合测距方法。该方法将双深度测量场的Warping变换提取结果与具有深度差异的拷贝场本征函数信息融合, 判别简正波干涉项模态, 提高测距的准确度。此外, 针对实际海洋环境中测量场Warping变换特征峰位置难以准确提取的问题, 将Warping变换的频率不变性与图像形态学方法结合以增强特征频率结构, 提高后续测距的稳健性。海试数据处理结果显示, 测距结果与实际距离符合较好, 表明所提方法具有实际可行性。

  相似文献   

2.
This work reports on an optical hydrophone that is insensitive to hydrostatic pressure, yet capable of measuring acoustic pressures as low as the background noise in the ocean in a frequency range of 1 Hz to 100 kHz. The miniature hydrophone consists of a Fabry-Perot interferometer made of a photonic-crystal reflector interrogated with a single-mode fiber and is compatible with existing fiber-optic technologies. Three sensors with different acoustic power ranges placed within a sub-wavelength sized hydrophone head allow a high dynamic range in the excess of 160 dB with a low harmonic distortion of better than -30 dB. A method for suppressing cross-coupling between sensors in the same hydrophone head is also proposed. A prototype was fabricated, assembled, and tested. The sensitivity was measured from 100 Hz to 100 kHz, demonstrating a sound-pressure-equivalent noise spectral density down to 12 μPa/Hz(1/2), a flatband wider than 10 kHz, and very low distortion.  相似文献   

3.
The focus of this work is on arrival time and amplitude estimation from acoustic signals recorded at spatially separated hydrophones in the ocean. A particle filtering approach is developed that treats arrival times as "targets" and tracks their "location" across receivers, also modeling arrival time gradient. The method is evaluated via Monte Carlo simulations and is compared to a maximum likelihood estimator, which does not relate arrivals at neighboring receivers. The comparison demonstrates a significant advantage in using the particle filter. It is also shown that posterior probability density functions of times and amplitudes become readily available with particle filtering.  相似文献   

4.
5.
Particle filtering for dispersion curve tracking in ocean acoustics   总被引:1,自引:0,他引:1  
A particle filtering method is developed for dispersion curve extraction from spectrograms of broadband acoustic signals propagating in underwater media. The goal is to obtain accurate representation of modal dispersion which can be employed for source localization and geoacoustic inversion. Results are presented from the application of the method to synthetic data, demonstrating the potential of the approach for accurate estimation of waveguide dispersion characteristics. The method outperforms simple time-frequency analysis providing estimates that are very close to numerically calculated dispersion curves. The method also provides uncertainty information on modal arrival time estimates, typically unavailable when traditional methods are used.  相似文献   

6.
A beam tracing method for interactive architectural acoustics   总被引:1,自引:0,他引:1  
A difficult challenge in geometrical acoustic modeling is computing propagation paths from sound sources to receivers fast enough for interactive applications. This paper describes a beam tracing method that enables interactive updates of propagation paths from a stationary source to a moving receiver in large building interiors. During a precomputation phase, convex polyhedral beams traced from the location of each sound source are stored in a "beam tree" representing the regions of space reachable by potential sequences of transmissions, diffractions, and specular reflections at surfaces of a 3D polygonal model. Then, during an interactive phase, the precomputed beam tree(s) are used to generate propagation paths from the source(s) to any receiver location at interactive rates. The key features of this beam tracing method are (1) it scales to support large building environments, (2) it models propagation due to edge diffraction, (3) it finds all propagation paths up to a given termination criterion without exhaustive search or risk of under-sampling, and (4) it updates propagation paths at interactive rates. The method has been demonstrated to work effectively in interactive acoustic design and virtual walkthrough applications.  相似文献   

7.
Some numerical results in the time domain obtained with the spectral-element method are presented in order to illustrate the high potential of this technique for modeling the propagation of acoustic waves in the ocean in complex configurations. A validation for a simple configuration with a known solution is shown, followed by some simulations of the propagation of acoustic waves over different types of ocean bottoms (fluid, elastic, and porous) to emphasize the wide variety of media that can be considered within the framework of this method. Finally, a movie illustrating upslope propagation over a viscoelastic wedge is presented and discussed.  相似文献   

8.
Moment equations and path integrals for wave propagation in random media have been applied to many ocean acoustics problems. Both these techniques make use of the Markov approximation. The expansion parameter, which must be less than one for the Markov approximation to be valid, is the subject of this paper. There is a standard parameter (the Kubo number) which various authors have shown to be sufficient. Fourth moment equations have been successfully used to predict the experimentally measured frequency spectrum of intensity in the mid-ocean acoustic transmission experiment (MATE). Yet, in spite of this success, the Kubo number is greater than 1 for the measured index of refraction variability for MATE, arriving at a contradiction. Here, that contradiction is resolved by showing that the Kubo parameter is far too pessimistic for the ocean case. Using the methodology of van Kampen, another parameter is found which appears to be both necessary and sufficient, and is much smaller than the Kubo number when phase fluctuations are dominated by large scales in the medium. This parameter is shown to be small for the experimental regime of MATE, justifying the applications of the moment equations to that experiment.  相似文献   

9.
在海洋声学中,三维抛物方程模型可以有效考虑三维空间的声传播效应。然而,采用三维抛物方程模型分析三维空间内的声传播问题时,计算时间较长,并且需要消耗较大的计算机内存,因此给远距离声场的快速精确计算带来了很大困难。为此,将非均匀网格Galerkin离散化方法用于三维直角坐标系下的水声抛物方程模型中,深度算子和水平算子Galerkin离散方式由均匀网格变为非均匀网格。仿真结果表明,三维直角坐标系下非均匀网格离散的抛物方程模型,在保持计算精度、提高计算速度的同时,可以实现远距离声场的快速预报。另外,针对远距离局部海底地形与距离有关的三维声传播问题,给出了声场快速计算方法;在海底保持水平的区域,采用经典Kraken模型,重构抛物方程算法的初始场,随后依次递推求解地形与距离有关海底下的三维声场。采用改进模型,证明了远距离楔形波导声强增强效应。  相似文献   

10.
The existence of extra-terrestrial oceans offers the opportunities to set examination questions for which students in underwater acoustics do not already know the answers. The limited set of scenarios in Earth's oceans that can be presented to students as tractable examination questions means that, rather than properly assessing the individual scenario, students can rely on knowledge from previous examples in assessing, for example, which terms in equations are large and small, and what numerical values the answers are likely to take. The habit of adapting previous solutions with which the student is comfortable, to new scenarios, is not a safe approach to learn, as it ill equips the future scientist or engineer to identify and tackle problems which contain serious departures from their experience.  相似文献   

11.
This paper presents a finite element method (FEM) using hexahedral 27-node spline acoustic elements (Spl27) with low numerical dispersion for room acoustics simulation in both the frequency and time domains, especially at higher frequencies. Dispersion error analysis in one dimension is performed to increase the accuracy of FEM using Spl27 by modifying the numerical integration points of element stiffness and mass matrices. The basic accuracy and efficiency of the FEM using the improved Spl27, which uses modified integration points, are presented through numerical experiments using benchmark problems in both the frequency and time domains, revealing that FEM using the improved Spl27 in both domains provides more accurate results than the conventional method does, and with fewer degrees of freedom. Moreover, the effectiveness of FEM using the improved Spl27 over that using hexahedral 27-node Lagrange elements is shown for time domain analysis of the sound field in a practical sized room.  相似文献   

12.
13.
The transverse flow of inhomogeneous fluid produces fluctuation of the acoustic signal passing through it. The coherence of frequency-spaced signal fluctuation is related to the advection of the inhomogeneous medium through the sound path, thus providing a basis for the current velocity measurement. This method can be considered to be the "frequency-domain" version of the conventional scintillation approach to the current velocity registration based on the measurement of the signal correlation transmitted from the source to the two separated in space receivers (space-domain scintillation) [S. Clifford and D. Farmer, J. Acoust. Soc. Am. 74, 1826-1832 (1983)]. The sensitivity of the method depends on the features of the ocean fine structure, which is determined mainly by the internal waves and turbulence. To estimate the sensitivity of the multifrequency method of transverse current probing, the coherence function of two signals propagating through a frozen and moving internal wave field and through the turbulence is considered. The application of the multifrequency signal allows estimation of the fine-structure parameters as well as the current velocity.  相似文献   

14.
张宇  徐晓辉 《声学学报》2011,36(2):221-225
本文探讨非线性声速分布、内波扰动、和海底反射对哈密顿抛物射线方程动力学行为的影响。运用Poincaré映象、Lyapunov指数等非线性动力学方法对射线系统行为进行描述。结果显示水声射线在不发生海底反射的情况下,内波对声速扰动的增强将导致正的Lyapunov指数,使射线产生不规则的混沌运动并扩大射线系统的混沌区域。然而海底反射显著影响了声速分布、内波扰动和射线运动的非线性相互作用。海底深度的减小使声射线系统的混沌区域扩大,然而过小的深度减弱了声速分布和射线的非线性相互作用,使混沌区域缩小。因此,我们可以得出海底反射对于水声射线的混沌动力学行为有重要影响的结论。  相似文献   

15.
The Helmholtz equation (HE) describes wave propagation in applications such as acoustics and electromagnetics. For realistic problems, solving the HE is often too expensive. Instead, approximations like the parabolic wave equation (PE) are used. For low-frequency shallow-water environments, one persistent problem is to assess the accuracy of the PE model. In this work, a recently developed HE solver that can handle a smoothly varying bathymetry, variable material properties, and layered materials, is used for an investigation of the errors in PE solutions. In the HE solver, a preconditioned Krylov subspace method is applied to the discretized equations. The preconditioner combines domain decomposition and fast transform techniques. A benchmark problem with upslope-downslope propagation over a penetrable lossy seamount is solved. The numerical experiments show that, for the same bathymetry, a soft and slow bottom gives very similar HE and PE solutions, whereas the PE model is far from accurate for a hard and fast bottom. A first attempt to estimate the error is made by computing the relative deviation from the energy balance for the PE solution. This measure gives an indication of the magnitude of the error, but cannot be used as a strict error bound.  相似文献   

16.
Time-harmonic exterior acoustic problems are solved by using a singular meshless method in this paper. It is well known that the source points cannot be located on the real boundary, when the method of fundamental solutions (MFS) is used due to the singularity of the adopted kernel functions. Hence, if the source points are right on the boundary the diagonal terms of the influence matrices cannot be derived. Herein we present an approach to obtain the diagonal terms of the influence matrices of the MFS for the numerical treatment of exterior acoustics. By using the regularization technique to regularize the singularity and hypersingularity of the proposed kernel functions, the source points can be located on the real boundary and therefore the diagonal terms of influence matrices are determined. We also maintain the prominent features of the MFS, that it is free from mesh, singularity, and numerical integration. The normal derivative of the fundamental solution of the Helmholtz equation is composed of a two-point function, which is one of the radial basis functions. The solution of the problem is expressed in terms of a double-layer potential representation on the physical boundary based on the potential theory. The solutions of three selected examples are used to compare with the results of the exact solution, conventional MFS, boundary element method, and Dirichlet-to-Neumann finite element method. Good numerical performance is demonstrated by close agreement with other solutions.  相似文献   

17.
The paper presents a method to solve the problem of multi-frequency calculation of Helmholtz boundary integral equation in acoustics. Based on series expansion, system matrices are independent of wavenumber and become the matrix power series of wavenumber. As a result, all matrices in the matrix power series are only dependent on the structure geometry. In addition, an element transform method to calculate the singular integral and Cauchy singular integral is also discussed because the singular integral need to be solved using the method. The convergence of the series expansion method is also proved in this paper. The effectiveness of the method is confirmed by two numerical examples.  相似文献   

18.
An asymptotic “extended characteristics method” is developed for solving nonlinear Riemann-type wave equations as applied to calculating the ray pattern of intense spatially modulated waves in weakly inhomogeneous media. The method makes it possible to avoid the singularity related to the foci of the initial wavefront, calculate the displacement in foci caused by the inhomogeneity of the medium, and thus calculate the ray pattern and intensity of the acoustic field. The beauty of the method is an exact nonlinear transfer equation for the field along the ray and the construction of its general solution for an arbitrary form of inhomogeneity. It is shown that the method is applicable to calculating the spatial structure of intense focused waves and wave beams outside the focal region in a nonlinear geometric acoustics approximation.  相似文献   

19.
阮颖铮 《声学学报》1992,17(6):407-413
本文介绍复源点射线技术原理,概述各种复射线分析方法,并举例说明这种方法在水声技术中一些可能的应用,包括指向性声场的复射线分析,声辐射器阵列方向性的复射线模拟,近区和远区声场的复射线变换,以及声呐目标强度的复射线理论预估等。  相似文献   

20.
水下目标回波特性计算的图形声学方法   总被引:5,自引:0,他引:5  
范军  卓琳凯 《声学学报》2006,31(6):511-516
根据Kirchhoff近似公式建立了一种水下目标回波特性实时工程预报的新方法-可视化图形声学计算方法GRACO (Graphical Acoustics Computing)。该方法利用三维图形处理系统,采用建模软件对水下复杂目标进行几何建模,并基于OpenGL技术把几何模型转化为屏幕上目标的可视化像素图形,获取像素中包含的目标表面法向量和空间距离信息,最后通过把回波特性预报中的面积分转化为屏幕上可视化图形的像素求和计算,完成水下目标回波特性预报。计算结果表明图形声学方法有较高的精度,计算速度比板块元方法快9~10倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号