首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A poly(p‐phenylenevinylene) derivative (PPV–TPA)] and a series of statistical copolyfluorenes (PF–TPA)] containing oxadiazole and triphenylamine segments along the main chain were synthesized by the Heck reaction and nickel‐mediated coupling, respectively. The PF–TPA copolyfluorenes with relatively low contents of oxadiazole and triphenylamine units were readily soluble in common organic solvents, whereas the other copolyfluorenes displayed lower solubility. PPV–TPA showed excellent solubility in solvents such as tetrahydrofuran (THF), dichloromethane, chloroform, and toluene. Thin films of the polymers absorbed light in the range of 375–396 nm and had optical band gaps of 2.76–2.98 eV. They emitted blue‐green light with a maximum at 414–522 nm. The fluorescence quantum yields in THF solutions were 0.08–0.53. The copolyfluorene PF–TPA thin films with high contents of oxadiazole and triphenylamine moieties emitted pure blue light that remained stable even after annealing at 150 °C for 4 h in air. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3556–3566, 2006  相似文献   

2.
Two series of new copolyfluorenes ( PFTP, PFTT ) were prepared by the Suzuki coupling reaction from two green‐emitting dibromo monomers (TP‐Br, TT‐Br) based on triphenylamine unit to be applied in white light electroluminescent devices. They were characterized by molecular weight determination, elemental analysis, DSC, TGA, absorption and photoluminescence spectra, and cyclic voltammetry. The estimated actual contents of the TP and TT chromophores were lower than 7.8 mol % and 1.9 mol % for PFTP and PFTT , respectively. In film state both copolyfluorenes showed photoluminescence at 400–470 and 470–600 nm originated from fluorene segments and the chromophores, respectively, due to incomplete energy transfer. Light‐emitting diodes with a structure of ITO/PEDOT:PSS/copolymer/Ca(50 nm)/Al(100 nm) showed major emission at 493–525 nm, plus minor emission at 400–470 nm when chromophore contents were low. The maximum brightness and maximum current efficiency of PFTP2 device were 8370 cd/m2 and 1.47 cd/A, whereas those of PFTT1 device were 9440 cd/m2 and 1.77 cd/A, respectively. Tri‐wavelength white‐light emission was realized through blending PFTT1 with poly(9,9‐dihexylfluorene) and a red‐emitting iridium complex, in which the maximum brightness and CIE coordinates were 6880 cd/m2 and (0.31, 0.33), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1553–1566, 2009  相似文献   

3.
A series of conjugated hyperbranched polymers, hyperbranched copolymers, and linear polymers containing 2‐pyran‐4‐ylidenemalononitrile (acceptor) and triphenylamine/fluorene (donor) units were synthesized and characterized by FTIR, 1H NMR, thermogravimetric analyses, differential scanning calorimetry, gel permeation chromatography, UV–visible, photoluminescence, and cyclic voltammetry measurements. All the polymers show red‐light emission in the range of 566–656 nm both in solution and in solid state. The quantum efficiency of the polymers was in the range of 56–82%. Among the six polymers synthesized, only polymers containing fluorene units show Tg and polymers based on triphenylamine not exhibit Tg. The band gap of these polymers were found to be reasonably low; hyperbranched copolymer containing fluorene unit shows lowest band gap of 2.18 eV due to the stabilization of LUMO energy level by the electron withdrawing ? CN groups. The thermal and solubility behavior of the polymers were found to be good. All the EL spectra of the devices (indium‐tin oxide/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/polymer/2,9‐dimethyl‐4,7‐diphenyl‐1,10‐phenanthroline/tris(8‐hydroxyquinoline)aluminum)/LiF/Al) show red‐light emission, and the device fabricated with P3 and P4 shows maximum luminance and luminous efficiency of 4104 cd m?2 and 0.55 cd Å?1 and 3696 cd m?2 and 0.47 cd Å?1, respectively, indicates that they had the best carrier balance. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
A new class of fused heterocyclic tridentate ligand‐containing alkynylgold(III) complexes with tunable emission color has been successfully designed and synthesized. Structural modification of the σ‐donating fused heterocyclic alkynyl ligands, including substituted fluorene, carbazole, and triphenylamine, enables a large spectral shift of about 110 nm (ca. 3310 cm?1) that covers the green to red region to be realized with the same tridentate ligand‐containing alkynylgold(III) complexes in solid‐state thin films. Interestingly, the energy of the excimeric emission can be controlled by the rational design of the fused heterocyclic alkynyl ligands. Superior solution‐processable organic light‐emitting devices (OLEDs) with high external quantum efficiencies (EQEs) of 12.2, 13.5, 9.3, and 5.2 % were obtained with green, yellow, orange, and red emission. These high EQE values are comparable to those of the vacuum‐deposited OLEDs based on structurally related alkynylgold(III) complexes.  相似文献   

5.
A series of fluorene derivatives containing nonsymmetric and bulky aromatic groups at C‐9 position were synthesized and used for the preparation of blue‐light‐emitting copolyfluorenes ( P1 – P4 ) by the Suzuki coupling polycondensation. The copolymers were characterized by molecular weight determination, elemental analysis, differential scanning calorimeter, thermogravimetric analysis, absorption and emission spectroscopy, cyclic voltammetry, and differential pulse voltammetry. Their decomposition temperatures and glass transition temperatures are 423–441 °C and >120 °C, respectively. In film state, the copolyfluorenes exhibit blue photoluminescence at 425–450 nm, which remains almost unchanged after annealing at 200 °C in air for 60 min. Polymer light‐emitting diodes [ITO/PEDOT:PSS/ P1 – P4 /Ca(50 nm)/Al(100 nm)] show stable blue‐light emission under device operation with the CIE co‐ordinates being between (0.16, 0.07) and (0.17, 0.09). The light‐emitting diodes devices from P1 and P3 containing electron‐deficient oxadiazole units display enhanced performance, with the maximum brightness and maximum current efficiency being (4510 cd/m2 and 2.40 cd/A) and (2930 cd/m2, 1.19 cd/A), respectively. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2821–2834, 2009  相似文献   

6.
Novel copolyfluorenes (CPFs) containing 2.5 or 10 mol% of carbazole-2,7-diyl (2,7-Cz) or carbazole-3,6-diyl (3,6-Cz) derivatives in the backbone have been synthesized by means of palladium-catalyzed Suzuki polymerization under microwave irradiation. The structure of the CPF polymers was also modified by insertion of additional 2-ethylhexyl or carbazole, diaryloxadiazole, or triphenylamine units via 3,6-Cz or 2,7-Cz comonomer units in the side chains of polymers. The self-organization of molecules in chloroform solutions was investigated using light scattering and within a wide concentration interval. Analysis of the behavior of the CPFs showed that the synthesized copolymers have an increased equilibrium rigidity of molecules with a Kuhn segment length A = (10–15) nm. The A value decreases with the introduction of Cz-units into the macromolecule in the meta-position. It is shown that chemical structure of the CPFs and thermal treatment in the temperature range 60–150 °C have a dominant effect on the optoelectronic properties as well as on microstructures of their films.  相似文献   

7.
Two well‐defined triphenylamine‐based fluorescent conjugated copolymers with pendant terpyridyl ligands were synthesized through Suzuki coupling polymerization and were further characterized by 1H‐NMR, 13C‐NMR, gel permeation chromatography, Infrared, and UV‐vis spectra. Polymer P‐1 , terpyridine‐bearing poly(triphenylamine‐alt‐fluorene) with a high fluorescence quantum yield (62%) shows much higher sensitivities toward Fe3+, Ni2+, and Cu2+ as compared with the other metal ions investigated. Especially, Fe3+ can lead to an almost complete fluorescence quenching of polymer P‐1 . Whereas, the analogous polymer P‐2 , in which N‐ethylcarbazole repeat units replace the fluorene units in P‐1 , shows a very poor selectivity. It demonstrates that polymers with a same receptor may show different sensitivity to analytes owing to their different type of backbones. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1310–1316, 2010  相似文献   

8.
Three novel copolyfluorenes ( P1 ‐ P3 ) containing pendant bipolar groups (2.5–7.7 mol %), directly linked hole‐transporting carbazole and electron‐transporting aromatic 1,2,4‐triazole, were synthesized by the Suzuki coupling reaction and applied to enhance emission efficiency of polymer light‐emitting diodes based on conventional MEH‐PPV. The bipolar groups not only suppress undesirable green emission of polyfluorene under thermal annealing, but also promote electron‐ and hole‐affinity of the resulting copolyfluorenes. Blending the bipolar copolyfluorenes with MEH‐PPV results in significant enhancement of device performance [ITO/PEDOT:PSS/MEH‐PPV+ P1 , P2 or P3 /Ca(50 nm)/Al(100 nm)]. The maximum luminance and luminance efficiency were enhanced from 3230 cd/m2 and 0.29 cd/A of MEH‐PPV‐only device to 15,690 cd/m2 and 0.81 cd/A (blend device with MEH‐PPV/ P3 = 94/6 containing about 0.46 wt % of pendant bipolar residues), respectively. Our results demonstrate the efficacy of the bipolar copolyfluorenes in enhancing emission efficiency of MEH‐PPV. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

9.
Built on the spiro[fluorene‐9,9′‐xanthene] (SFX) core and two frequently‐used hole‐transporting groups such as carbazole and diphenylamine, two SFX derivatives, namely SFXCz and SFXDPA, have been synthesized by one‐step reaction for red, green and blue phosphorescent organic light‐emitting devices (PHOLEDs). Though the properties of these two groups are very similar, the devices based on SFXCz and SFXDPA exhibit distinct performances. In blue PHOLEDs, the device based on SFXCz exhibited much better performances than that based on SFXDPA. However, the latter was superior to the former in green and red PHOLEDs. And the red PHOLED based on SFXDPA exhibited maximum current efficiency (CE) of 27.1 cd·A?1, power efficiency (PE) of 25.0 lm·W?1, and external quantum efficiency (EQE) of 15.0%. The results show that the introduction of diphenylamine group is suitable for constructing green and red host materials, whereas the introduction of carbazole group is suitable for constructing blue host materials.  相似文献   

10.
A new strategy to realize efficient white‐light emission from a binary fluorene‐based copolymer (PF‐Phq) with the fluorene segment as a blue emitter and the iridium complex, 9‐iridium(III)bis(2‐(2‐phenyl‐quinoline‐N,C3′)(11,13‐tetradecanedionate))‐3,6‐carbazole (Phq), as a red emitter has been proposed and demonstrated. The photo‐ and electroluminescence properties of the PF‐Phq copolymers were investigated. White‐light emission with two bands of blue and red was achieved from the binary copolymers. The efficiency increased with increasing concentration of iridium complex, which resulted from its efficient phosphorescence emission and the weak phosphorescent quenching due to its lower triplet energy level than that of polyfluorene. In comparison with the binary copolymer, the efficiency and color purity of the ternary copolymers (PF‐Phq‐BT) were improved by introducing fluorescent green benzothiadiazole (BT) unit into polyfluorene backbone. This was ascribed to the exciton confinement of the benzothiadiazole unit, which allowed efficient singlet energy transfer from fluorene segment to BT unit and avoided the triplet quenching resulted from the higher triplet energy levels of phosphorescent green emitters than that of polyfluorene. The phosphorescence quenching is a key factor in the design of white light‐emitting polyfluorene with triplet emitter. It is shown that using singlet green and triplet red emitters is an efficient approach to reduce and even avoid the phosphorescence quenching in the fluorene‐based copolymers. The strategy to incorporate singlet green emitter to polyfluorene backbone and to attach triplet red species to the side chain is promising for white polymer light‐emitting diodes. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 453–463, 2008  相似文献   

11.
A new bipolar conjugated polyfluorene copolymer with triphenylamine and cyanophenylfluorene as side chains, poly{[9,9‐di(triphenylamine)fluorene]‐[9,9‐dihexyl‐fluorene]‐[2,7‐bis(4′‐cyanophenyl)‐9,9′‐spirobifluorene]} ( PTHCF ), was synthesized for studying the polymer backbone emission. Its absolute weight‐average molecular weight was determined as 4.85 × 104 by using gel permeation chromatography with a multiangle light scattering detector. In contrast to the electronic absorption spectrum in dilute solution, the absorbance of PTHCF in thin film was slightly blue shifted. By comparison of the solution and thin‐film photoluminescence (PL) spectra, a red shift of Δλ = 8–9 nm was observed in the thin‐film PL spectrum. The HOMO and LUMO energy levels of the resulting polymer were electrochemically estimated as ?5.68 and ?2.80 eV, respectively. Under the electric‐field intensity of 4.8 × 105 V cm?1, the obtained hole and electron mobilities were 2.41 × 10?4 and 1.40 × 10?4 cm2 V?1 s?1, respectively. An electroluminescence device with configuration of ITO/PEDOT:PSS/ PTHCF 70%+PBD30%/CsF/Ca/Al exhibited a deep‐blue emission as a result of excitons formed by the charges migrating along the full‐fluorene main chain. The incorporation of the bipolar side chains into the polymer structure prevented the intermolecular interaction of the fluorene moieties, balance charge injection/transport, and thereby improve the polymer backbone emission. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

12.
We examine the photophysical properties of ladder-type pentaphenylenes, which have been prepared as prototypical "all-in-one" emissive materials bearing both electron-accepting (diaryloxadiazole) and electron-donating (triphenylamine) units. We find that donor-acceptor interactions are very dependent on the nature of the connectivity of these groups to the main pentaphenylene chain. When the oxadiazole and triphenylamine units were substituted on opposite sides of the pi-conjugated pentaphenylene chromophore, photoluminescence with long lifetimes typical of exciplex-like species was observed, while being significantly quenched by intermolecular charge separation between the substituents. By contrast, when the triphenylamine units were attached at the ends of the chromophore, no such effects were observed and a blue/green photoluminescence was obtained with very high quantum efficiency. In this latter configuration, evidence of ambipolar charge transport and a blue/green electroluminescence were additionally observed.  相似文献   

13.
A conjugated poly(p‐CN‐phenylenevinylene) (PCNPV) containing both electron‐donating triphenylamine units and electron‐withdrawing cyano groups was prepared via Knoevenagel condensation in a good yield. Gel permeation chromatography suggested that the soluble polymer had a very high weight‐average molecular weight of 309,000. A bright and saturated red emission was observed under UV excitation in solution and film. Cyclic voltammetry showed that the polymer presented quasi‐reversible oxidation with a relatively low potential because of the triphenylamine unit. A single‐layer indium tin oxide/PCNPV/Mg–Ag device emitted a bright red light (633 nm). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3947–3953, 2004  相似文献   

14.
Three symmetrical donor–acceptor–donor (D–A–D) luminophores ( C1 , C2 , and C3 ) with pyrazine derivatives as electron‐withdrawing groups have been developed for multistimuli‐responsive luminescence switching. For comparison, reference compounds R1 and R2 without the pyrazine moiety have also been synthesized. Intramolecular charge transfer (ICT) interactions can be found for all D–A–D luminophores owing to the electron‐withdrawing properties of the two imine nitrogen atoms in the pyrazine ring and the electron‐donating properties of the other two amine nitrogen atoms in the two triphenylamine units. Moreover, luminophores C1 , C2 , and C3 exhibit “on–off–on” luminescence switching properties in mixtures of water/tetrahydrofuran with increasing water content, which is different from the “on–off” switching for typical aggregation‐caused quenching (ACQ) materials and “off–on” switching for traditional aggregation‐induced emission (AIE) materials. Additionally, upon grinding the pristine samples, luminophores C1 , C2 , and C3 display bathochromically shifted photoluminescence maxima that can be recovered by either solvent fuming or thermal annealing treatments. The piezofluorochromic (PFC) properties are more pronounced than those for reference compounds R1 and R2 , which indicates that D–A molecules have the ability to amplify the PFC effect by tuning the ICT interactions upon tiny structural changes under pressure. Furthermore, the target luminophores demonstrate acid‐responsive photoluminescence spectra that can be recovered in either basic or ambient environments. These results suggest that D–A complexes are potential candidates for multistimuli‐responsive luminescence switching because their ICT profiles can be facilely tuned with tiny external stimuli.  相似文献   

15.
A novel fluorene derivative containing triphenylamine groups, 2,7-bis[4-(diphenylamino)-phenyl]fluorene (C49H36N2 , Mr= 652.80), was synthesized via Suzuki coupling reaction (yield: 19%) and its crystal structure was determined by single-crystal X-ray diffraction. It crystallizes in triclinic, space group P1 with a = 9.320(4), b = 11.250(6), c = 17.369(6) , α = 88.035(3), β = 86.450(5), γ = 73.524(5)°, V = 1742.8(13) 3 , Z = 2, Dc = 1.244 g/cm 3 , μ(MoKα) = 0.072 mm -1 , F(000) = 688, S = 1.095, the final R = 0.0616 and wR = 0.1878. It presents a linear framework constituted by a linkage of fluorene as a bridge and two triphenylamine groups. Its spectral and electrochemical properties were studied by UV-Vis absorption, fluorescence spectroscopy and cyclic voltammetry (CV). This compound can emit intense blue fluorescence with a peak wavelength of 446 nm and a full width at half maximum (FWHM) of 38 nm under UV excitation at 350 nm in film. The highest occupied molecular orbital (HOMO) energy level, the lowest unoccupied molecular orbital (LUMO) energy level and optical band gap (Eg) of the title compound are -5.46, -2.57 and 2.89 eV, respectively.  相似文献   

16.
Four new star‐shaped π‐conjugated oligomers ( TPA‐CZ3 , TPA‐TPA3 , TPA‐PTZ3 and TPA‐BT3 ) with triphenylamine as a core and different electron‐donating ability groups, carbazole, triphenylamine, phenothiazine and bithiophene, as peripheral units have been designed and synthesized via the Heck reaction. These oligomers show good solubility in common organic solvents. Their photophysical, electrochemical, electronic structure and charge transfer properties between these star‐shaped π‐conjugated oligomers and N,N′‐bis(1‐ethylpropyl)‐3,4:9,10‐perylene bis(tetracarboxyl diimide) (EP‐PDI) have been investigated by UV‐vis absorption spectra, photoluminescence (PL) spectra, cyclic voltammetry (CV) measurement, theoretical calculations and fluorescence quenching. The results show that the absorptions and fluorescences of TPA‐CZ3 , TPA‐TPA3 and TPA‐PTZ3 are red shifted with the electron‐donating ability of the peripheral unit increasing from carbazole to triphenylamine and phenothiazine. In addition, although the bithiophene group has a weaker electron‐donating ability than carbazole, triphenylamine and phenothiazine, the absorption and fluorescence of TPA‐BT3 have a red shift than those of TPA‐CZ3 , TPA‐TPA3 and TPA‐PTZ3 because TPA‐BT3 has a longer conjugation length than TPA‐CZ3 , TPA‐TPA3 and TPA‐PTZ3 . The triphenylamine core and the peripheral units can constitute a large conjugated structure. The fluorescence quenching properties indicate that efficient charge transfer can happen between the star‐shaped oligomers and EP‐PDI.  相似文献   

17.
We have synthesized a blue-light-emitting polyfluorene derivative (PF-TPAOXD) that presents sterically hindered, dipolar pendent groups functionalized at the C-9 positions of alternating fluorene units. The incorporation of the dipolar side chains, each comprising an electron-rich triphenylamine group and an electron-deficient oxadiazole group connected through a π-conjugated bridge, endows the resultant polymer with higher highest occupied molecular orbital and lower lowest unoccupied molecular orbital energy levels, which, consequently, lead to an increase in both hole and electron affinities. An electroluminescent device incorporating this polymer as the emitting layer exhibited a stable blue emission with a maximum brightness of 2080 cd/m2 at 12 V and a maximum external quantum efficiency of 1.4% at a brightness of 137 cd/m2. Furthermore, atomic force microscopy measurements indicated that the dipolar nature of PF-TPAOXD, in contrast to the general nonpolarity of polydialkylfluorenes, provided a stabilizing environment allowing the polar organometallic triplet dopant to be dispersed homogeneously. We also fabricated an electrophosphorescent device incorporating PF-TPAOXD as the host material doped with a red-emitting osmium complex to realize red electroluminescence with Commission Internationale de l'Eclairage color coordinates of (0.66, 0.34). The resulting device exhibited a maximum external quantum efficiency of 7.3% at a brightness of 1747 cd/m2 and a maximum brightness of 7244 cd/m2. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2073–2084, 2007  相似文献   

18.
A new water soluble fluorene‐based polyelectrolyte containing on‐chain porphyrin units has been synthesized via Suzuki coupling, for use in optoelectronic devices. The material consist of a random copolymer of poly{1,4‐phenylene‐[9,9‐bis(4‐phenoxy butylsulfonate)]fluorene‐2,7‐diyl} (PBS‐PFP) and a 5,15‐diphenylporphyrin (DPP). The energy transfer process between the PBS‐PFP units and the porphyrin has been investigated through steady state and time‐resolved measurements. The copolymer PBS‐PFP‐DPP displays two different emissions one located in the blue region of the spectra, corresponding to the fluorene part and another in the red due to fluorescent DPP units either formed directly or by exciton transfer. However, relatively inefficient energy transfer from the PFP to the on‐chain porphyrin units was observed. We compare this with a system involving an anionic blue light‐emitting donor PBS‐PFP and a anionic red light‐emitting energy acceptor meso‐tetrakisphenylporphyrinsulfonate (TPPS), self‐assembled by electrostatic attraction induced by Ca2+. Based on previous studies related to chain aggregation of the anionic copolymer PBS‐PFP, two different solvent media were chosen to further explore the possibilities of the self‐assembled system: dioxane–water and aqueous nonionic surfactant n‐dodecylpentaoxyethylene glycol ether (C12E5). In contrast, with the on‐chain PBS‐PFP‐DPP system the strong overlap of the 0‐0 emission peak of the PBS‐PFP and the Soret absorption band of the TPPS results in an efficient Förster transfer. This is strongly dependent on the solvent medium used. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
A new class of borate luminophores has been synthesized by a simple two-step reaction using potassium acyltrifluoroborates (KATs) as starting materials. The hydrazones obtained from reactions between KATs and 2-hydrazinopyridines followed by a cyclization resulted in the unprecedented formation of C,N-chelated six-membered bora-heterocycles. Under consideration of the results of DFT and TD-DFT calculations, four luminophores based on such bora-heterocycles are designed and synthesized, which exhibit a tunable fluorescence range from blue to red in the solid state. Moreover, one of the luminophores exhibits mechanofluorochromism from blue to yellow/green. As a result of the aforementioned mechanochromism of one of these luminophores, white-color emission was achieved by simply mixing the four luminophores.  相似文献   

20.
A series of new triarylamine‐based platinum‐acetylide complexes ( WY s) have been designed and synthesized as new sensitizers for applications in dye‐sensitized solar cells (DSSCs). With the aim of investigating the effect of a rigidifying donor structure on the photoelectrical parameters of the corresponding DSSCs, two new sensitizers, WY1 and WY2 , with rigid and coplanar fluorene units as an electron donor, were prepared. Moreover, two sensitizers that contained triphenylamine units as an electron donor, WY3 and WY4 , were also synthesized for comparison. The photo‐ and electrochemical properties of all of these new complexes have been extensively explored. We found that the dimethyl‐fluorene unit exhibited a stronger electron‐donating ability and better photovoltaic performance compared to the triphenylamine unit, owing to its rigidifying structure, which restricted the rotation of σ bonds, thus increasing the conjugation efficiency. Furthermore, WY2 , which contained a dimethyl‐fluorene unit as an electron donor and bithiophene as a π bridge, showed a relatively high open‐circuit voltage (Voc) of 640 mV and a PCE of 4.09 %. This work has not only expanded the choice of platinum‐acetylide sensitizers, but also demonstrates the advantages of restricted rotation of donor σ bonds for improved behavior of the corresponding DSSCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号