首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this article, differential quadrature method (DQM), a highly accurate and efficient numerical method for solving nonlinear problems, is used to overcome the difficulty in determining the optimal exercise boundary of American option. The following three parts of the problem in pricing American options are solved. The first part is how to treat the uncertainty of the early exercise boundary, or free boundary in the language of the PDE treatment of the American option, because American options can be exercised before the date of expiration. The second part is how to solve the nonlinear problem, because the problem of pricing American options is nonlinear. And the third part is how to treat the initial value condition with the singularity and the boundary conditions in the DQM. Numerical results for the free boundary of American option obtained by both DQM and finite difference method (FDM) are given and from which it can be seen the computational efficiency is greatly improved by DQM. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 711–725, 2002; Published online in Wiley InterScience (www.interscience.wiley.com); DOI 10.1002/num.10028.  相似文献   

2.
Five numerical methods for pricing American put options under Heston's stochastic volatility model are described and compared. The option prices are obtained as the solution of a two‐dimensional parabolic partial differential inequality. A finite difference discretization on nonuniform grids leading to linear complementarity problems with M‐matrices is proposed. The projected SOR, a projected multigrid method, an operator splitting method, a penalty method, and a componentwise splitting method are considered. The last one is a direct method while all other methods are iterative. The resulting systems of linear equations in the operator splitting method and in the penalty method are solved using a multigrid method. The projected multigrid method and the componentwise splitting method lead to a sequence of linear complementarity problems with one‐dimensional differential operators that are solved using the Brennan and Schwartz algorithm. The numerical experiments compare the accuracy and speed of the considered methods. The accuracies of all methods appear to be similar. Thus, the additional approximations made in the operator splitting method, in the penalty method, and in the componentwise splitting method do not increase the error essentially. The componentwise splitting method is the fastest one. All multigrid‐based methods have similar rapid grid independent convergence rates. They are about two or three times slower that the componentwise splitting method. On the coarsest grid the speed of the projected SOR is comparable with the multigrid methods while on finer grids it is several times slower. ©John Wiley & Sons, Inc. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2007  相似文献   

3.
We propose an iterative method for pricing American options under jump-diffusion models. A finite difference discretization is performed on the partial integro-differential equation, and the American option pricing problem is formulated as a linear complementarity problem (LCP). Jump-diffusion models include an integral term, which causes the resulting system to be dense. We propose an iteration to solve the LCPs efficiently and prove its convergence. Numerical examples with Kou?s and Merton?s jump-diffusion models show that the resulting iteration converges rapidly.  相似文献   

4.
Swing options generalize American-style options as they allow the holder multiple exercise rights and control over the exercise amounts. In this work, we replace the standard (binomial) trees in the forest of trees algorithm with stochastic meshes, yielding the forest of stochastic meshes; a simulation-based method for valuing high-dimensional swing options. This new method handles general price processes and payoffs, produces high- and low-biased consistent estimators and a true option price confidence interval.  相似文献   

5.
The paper describes an implicit finite difference approach to the pricing of American options on assets with a stochastic volatility. A multigrid procedure is described for the fast iterative solution of the discrete linear complementarity problems that result. The accuracy and performance of this approach is improved considerably by a strike-price related analytic transformation of asset prices and adaptive time-stepping.  相似文献   

6.
In general, the pricing problems of exotic options in finance do not have analytic solutions under stochastic volatility and so it is hard to compute the option prices or at least it requires much of time to compute them. This paper investigates a semi-analytic pricing method for lookback options in a general stochastic volatility framework. The resultant formula is well connected to the Black–Scholes price that is the first term of a series expansion, which makes computing the option prices relatively efficient. Further, a convergence condition for the expansion is provided with an error bound.  相似文献   

7.
讨论美式期权定价的有限体积法.采用投影超松弛迭代法求解隐式欧拉和CrankNicolson有限体积格式离散Black-Scholes偏微分方程得到的线性互补问题.数值实验结果表明,两种有限体积格式都是有效的,而Crank-Nicolson格式的数值效果要优于隐式欧拉格式.  相似文献   

8.
The purpose of this paper is to analyse the effect of stochastic interest rates on the pricing of Asian options. It is shown that a stochastic, in contrast to a deterministic, development of the term structure of interest rates has a significant influence. The price of the underlying asset, e.g. a stock or oil, and the prices of bonds are assumed to follow correlated two-dimensional Itô processes. The averages considered in the Asian options are calculated on a discrete time grid, e.g. all closing prices on Wednesdays during the lifetime of the contract. The value of an Asian option will be obtained through the application of Monte Carlo simulation, and for this purpose the stochastic processes for the basic assets need not be severely restricted. However, to make comparison with published results originating from models with deterministic interest rates, we will stay within the setting of a Gaussian framework.  相似文献   

9.
A greedy algorithm in combination with radial basis functions partition of unity collocation (GRBF‐PUC) scheme is used as a locally meshless method for American option pricing. The radial basis function partition of unity method (RBF‐PUM) is a localization technique. Because of having interpolation matrices with large condition numbers, global approximants and some local ones suffer from instability. To overcome this, a greedy algorithm is added to RBF‐PUM. The greedy algorithm furnishes a subset of best nodes among the points X. Such nodes are then used as points of trial in a locally supported RBF approximant for each partition. Using of greedy selected points leads to decreasing the condition number of interpolation matrices and reducing the burdensome in pricing American options.  相似文献   

10.
We introduce a weak Galerkin finite element method for the valuation of American options governed by the Black-Scholes equation. In order to implement, we need to solve the optimal exercise boundary and then introduce an artificial boundary to make the computational domain bounded. For the optimal exercise boundary, which satisfies a nonlinear Volterra integral equation, it is resolved by a higher-order collocation method based on graded meshes. With the computed optimal exercise boundary, the front-fixing technique is employed to transform the free boundary problem to a one- dimensional parabolic problem in a half infinite area. For the other spatial domain boundary, a perfectly matched layer is used to truncate the unbounded domain and carry out the computation. Finally, the resulting initial-boundary value problems are solved by weak Galerkin finite element method, and numerical examples are provided to illustrate the efficiency of the method.  相似文献   

11.
We examine the valuation of American put options by a semi-analytical method, and obtain the prior estimate and the convergence of the approximate solution. Our proofs are based on the embedding theorem in Sobolev space and the theory of functional analysis, in particular, the theory of weak compactness. The results in this paper theoretically confirm empirical observations that these methods are accurate and computationally efficient.  相似文献   

12.
Abstract

We propose an approach for computing the arbitrage-free interval for the price of an American option in discrete incomplete market models via linear programming. The main idea is built replicating strategies that use both the basic asset and some European derivatives available on the market for trading. This method goes under the name of calibrated option pricing and it has given significant results for European options. Here, we extend the analysis to American options showing that the arbitrage-free interval can be characterized in terms of martingale measures and that it gets significantly reduced with respect to the non-calibrated case.  相似文献   

13.
Based on the Legendre pseudospectral method, we propose a numerical treatment for pricing perpetual American put option with stochastic volatility. In this simple approach, a nonlinear algebraic equation system is first derived, and then solved by the Gauss-Newton algorithm. The convergence of the current scheme is ensured by constructing a test example similar to the original problem, and comparing the numerical option prices with those produced by the classical Projected SOR (PSOR) method. The results of our numerical experiments suggest that the proposed scheme is both accurate and efficient, since the spectral accuracy can be easily achieved within a small number of iterations. Moreover, based on the numerical results, we also discuss the impact of stochastic volatility term on the prices of perpetual American puts.  相似文献   

14.
Electricity swing options are supply contracts for power, which give the owner the right to change the required delivery on short time notice. It gives more flexibility than fixed base load or peak load contracts. The name “option” is a bit misleading, since it gives the owner multiple exercise rights at many different time horizons with exercise amounts on a continuous scale. We look at the problem to determine a rational ask price for such a contract from the viewpoint of the contract seller. The pricing of these contracts differs drastically from the pricing of financial options. First, peculiar properties arise from the non-storability of the underlying (the energy) and therefore the impossibility to hedge with the underlying, hedging is only possible with some future contracts. Second, the behavior of the owner plays an important role. Based on some behavioral model for the option holder, we develop a game-theoretic model, which allows to identify the equilibrium price. Besides some theoretical results, we present some numerical results which clarify the dependence of the asked price on the amount of flexibility offered in the swing option.  相似文献   

15.
Based on Cox and Matthews Exponential Time Differencing (ETD) approach, a fourth–order strongly–stable method having real distinct poles is developed and applied to solve American options under stochastic volatility with nonsmooth payoffs. A computationally efficient version of the method is constructed using partial fraction splitting technique. This approach requires to solve several backward Euler‐type linear systems at each time step. Numerical experiments are presented to demonstrate the computational efficiency, accuracy, and reliability of the method. © 2013 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2013  相似文献   

16.
In this paper a simulation approach for defaultable yield curves is developed within the Heath et al. (1992) framework. The default event is modelled using the Cox process where the stochastic intensity represents the credit spread. The forward credit spread volatility function is affected by the entire credit spread term structure. The paper provides the defaultable bond and credit default swap option price in a probability setting equipped with a subfiltration structure. The Euler–Maruyama stochastic integral approximation and the Monte Carlo method are applied to develop a numerical scheme for pricing. Finally, the antithetic variable technique is used to reduce the variance of credit default swap option prices.  相似文献   

17.
An efficient Monte Carlo simulation for the pricing of barrier options in a Markov-switching model is presented. Compared to a brute-force approach, relying on the simulation of discretized trajectories, the presented algorithm simulates the underlying stock price process only at state changes and at maturity. Given these pieces of information, option prices are evaluated using the probability of Brownian bridges not to fall below some threshold level. It is illustrated how two methods of variance reduction, control variates and antithetic variates, further improve the algorithm. In a small case study, the algorithm is applied to the pricing of options with the EuroStoxx 50 as underlying.  相似文献   

18.
We demonstrate how the problem of determining the ask price for electricity swing options can be considered as a stochastic bilevel program with asymmetric information. Unlike as for financial options, there is no way for basing the pricing method on no-arbitrage arguments. Two main situations are analyzed: if the seller has strong market power he/she might be able to maximize his/her utility, while in fully competitive situations he/she will just look for a price which makes profit and has acceptable risk. In both cases the seller has to consider the decision problem of a potential buyer – the valuation problem of determining a fair value for a specific option contract – and anticipate the buyer’s optimal reaction to any proposed strike price. We also discuss some methods for finding numerical solutions of stochastic bilevel problems with a special emphasis on using duality gap penalizations.  相似文献   

19.
In this paper, we consider the binomial tree method for pricing perpetual American and perpetual Bermudan options. The closed form solutions of these discrete models are solved. Explicit formulas for the optimal exercise boundary of the perpetual American option is obtained. A nonlinear equation that is satisfied by the optimal exercise boundaries of the perpetual Bermudan option is found.   相似文献   

20.
Numerous studies present strong empirical evidence that certain financial assets may exhibit mean reversion, stochastic volatility or jumps. This paper explores the valuation of European options when the underlying asset follows a mean reverting log-normal process with stochastic volatility and jumps. A closed form representation of the characteristic function of the process is derived for the computation of European option prices via the fast Fourier transform.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号