首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of carbon dioxide and methane on silicalite pellets packed on a fixed bed has been studied. Equilibrium and kinetic measurements of the adsorption of carbon dioxide and methane have been performed, and a binary adsorption isotherm for carbon dioxide/methane mixtures has been obtained. A model based on the LDF approximation for the mass transfer has been used to describe the breakthrough curves obtained experimentally. A PSA cycle has been proposed for obtaining methane with purity higher than 98% from carbon dioxide/methane mixtures containing 38% and 50% methane, and its performance has been simulated using the proposed model. The simulation results show that silicalite can be a suitable adsorbent for employment in a PSA separation process for carbon dioxide removal from coalseam and landfill gases.  相似文献   

2.
In this work, the separation of carbon dioxide/methane mixtures by PSA using a basic resin (Amberlite IRA-900) has been studied. Adsorption equilibrium and kinetics of carbon dioxide and methane on a fixed-bed of this adsorbent have been measured, and a binary adsorption equilibrium isotherm has been obtained. The adsorbent deactivation with the number of adsorption-desorption cycles, and its regeneration, have also been analysed. A model based on the LDF approximation has been used to describe the experimental breakthrough curves. The applicability of the basic resin to the separation of carbon dioxide/methane mixtures has been studied in an experimental PSA setup using a single bed. The validity of the model used in the fixed-bed study for simulating a PSA system has been checked by comparing the simulated and the experimental performance of the proposed PSA cycle.  相似文献   

3.
Parametric Study of a Pressure Swing Adsorption Process   总被引:2,自引:0,他引:2  
The performance of a pressure swing adsorption (PSA) process for production of high purity hydrogen from a binary methane-hydrogen mixture is simulated using a detailed, adiabatic PSA model. An activated carbon is used for selective adsorption of methane over hydrogen. The effects of various independent process variables (feed gas pressure and composition, purge gas pressure and quantity, configuration of process steps) on the key dependent process variables (hydrogen recovery at high purity, hydrogen production capacity) are evaluated. It is demonstrated that many different combinations of PSA process steps, their operating conditions, and the feed gas conditions can be chosen to produce an identical product gas with different hydrogen recovery and productivity.  相似文献   

4.
In this work,the use of sepiolite for the removal of carbon dioxide from a carbon diox- ide/methane mixture by a pressure swing adsorption(PSA)process has been researched.Adsorption equilibrium and kinetics have been measured in a fixed-bed,and the adsorption equilibrium parameters of carbon dioxide and methane on sepiolite have been obtained.A model based on the LDF approxima- tion has been employed to simulate the fixed-bed kinetics,using the Langmuir equation to describe the adsorption equilibrium isotherm.The functioning of a PSA cycle for separating carbon dioxide/methane mixtures using sepiolite as adsorbent has also been studied.The experimental results were compared with the ones predicted by the model adapted to a PSA system.Methane with purity higher than 97% can be obtained from feeds containing carbon dioxide with concentrations ranging from 34% to 56% with the proposed PSA cycle.These results suggest that sepiolite is an adsorbent with good properties for its employment in a PSA cycle for carbon dioxide removal from landfill gases.  相似文献   

5.
Pure and binary adsorption of CO2, H2, and N2 on activated carbon   总被引:1,自引:0,他引:1  
A new developing field of application for pressure swing adsorption (PSA) processes is the capture of CO2 to mitigate climate change, especially the separation of CO2 and H2 in a pre-combustion context. In this process scheme the conditions of the feed to the separation step, namely a pressure of 3.5 to 4.5 MPa and a CO2 fraction of around 40% are favorable for an adsorption based separation process and make PSA a promising technology. Among the commercial adsorbent materials, activated carbon is most suitable for this application. To evaluate the potential, to benchmark new materials, and for process development a sound basis of the activated carbon thermodynamic data is required, namely equilibrium adsorption isotherms of the relevant pure components and mixtures, Henry’s constants and isosteric heats.  相似文献   

6.
7.
Using molecular simulation, four types of nanoporous carbons are examined as adsorbents for the separation of CO(2)/CH(4) mixtures at ambient temperature and pressures up to 10 MPa. First, the adsorption selectivity of CO(2) is investigated in carbon slit pores and single-walled carbon nanotube bundles in order to find the optimal pore dimensions for CO(2) separation. Then, the adsorptive properties of the optimized slit pore and nanotube bundle are compared with two realistic nanoporous carbon models: a carbon replica of zeolite Y and an amorphous carbon. For the four carbon models, adsorption isotherms and isosteric heats of adsorption are presented for both pure components and mixtures. Special attention is given to the calculation of excess isotherms and isosteric heats, which are necessary to assess the performance of model nanoporous materials in the context of experimental measurements. From these results, we discuss the impact that variables such as pore size, pore morphology, pressure and mixture composition have on the performance of nanoporous carbons for CO(2) separation.  相似文献   

8.
The performance of multi-bed pressure swing adsorption (PSA) process for producing high purity hydrogen from synthesis gas was studied experimentally and theoretically using layered beds of activated carbon and zeolite 5A. Nonisothermal and nonadiabatic models, considering linear driving force model and Dual-site Langmuir adsorption isotherm model, were used. The effects of the following PSA variables on separation process were investigated: linear velocity of feed, adsorption time and purge gas quantity. As a result, we recovered a high purity H2 product (99.999%) with a recovery of 66% from synthesis gas when the pressure was cycled between 1 and 8 atm at ambient temperature.  相似文献   

9.
An approximate rate equation based on a film-model representation of diffusional mass transfer has been developed to describe the kinetics of multicomponent adsorption. The model describes mass transfer as a pseudo-steady state diffusion process through a flat film of thickness equal to one fifth of the particle radius. The flux relationships are integrated across the film yielding analytical expressions for the rate of mass transfer in a multicomponent adsorption system. The usefulness of the film model approximation is tested by carrying out calculations for three different practical adsorption systems: the adsorption of n-pentane and n-heptane mixtures on NaCaA zeolite discussed by Marutovsky and Bülow (1987); the adsorption of air in molecular sieve RS-10 discussed by Farooq et al. (1993); and the separation of air in a kinetically-controlled nitrogen PSA process discussed by Farooq and Ruthven (1990) and Sundaram and Yang (1998). In each case, the film model approximation predicts the expected trends accounting for the coupling of diffusion fluxes in the adsorbed phase.  相似文献   

10.
11.
In this work, we report new experimental data of pure and binary adsorption equilibria of carbon dioxide and methane on the activated carbon RB2 at 273 and 298 K. The pressure range studied were 0–3.5 MPa for pure gases and 0–0.1 MPa for mixtures. The combination of the generalized Dubinin model to describe the pure CO2 and CH4 isotherms with the IAST (Ideal Adsorbed Solution Theory) for the mixtures provide a method for the calculation of the binary adsorption equilibria. This formulation predicts with acceptable accuracy the binary adsorption data and can easily be integrated in general dynamic simulation of PSA (pressure swing adsorption process) adsorption columns. It involves only three parameters, independent of the temperature, and directly determined with only one adsorption isotherm of CO2.  相似文献   

12.
Analytic expressions for unary and binary isosteric heats of adsorption as a function of the adsorbed phase loading were derived from the dual process Langmuir (DPL) model using the Clausius-Clapeyron equation. Unary isosteric heats of adsorption predicted from these expressions for several adsorbate-adsorbent systems were compared to values in the literature predicted from the well-accepted graphical approach using Toth and unilan models (Adsorption Equilibrium Data Handbook; Prentice Hall: NJ, 1989). Predictions from the DPL model were also compared to rare experimental unary and binary isosteric heats of adsorption in the literature for another adsorbate-adsorbent system. In all cases, very good agreement was obtained, showing that the DPL model can be used in adsorption process modeling for accurately predicting not only ideal and nonideal mixed-gas adsorption equilibria (Langmuir 2011, 27, 4700), but also unary and even binary isosteric heats of adsorption.  相似文献   

13.
In this study we present a global overview of the adsorption behavior of hexane isomers on MFI. With an experimental approach that couples a manometric technique with Near Infrared (NIR) spectroscopy, which has been recently developed, we did address adsorption kinetic properties of n-hexane, 2-methylpentane, 2,2-dimethylbutane and 2,3-dimethylbutane, and their binary mixtures. The adsorption equilibrium properties of the binary mixtures were also assessed using the same technique. Whereas the adsorption isotherms and heats of adsorption for single components have been studied by a manometric technique coupled with a micro calorimeter. The differential heats of adsorption of n-hexane increase slightly with loading, on the other hand the heat of adsorption of branched hexanes exhibits a decrease with loading. The diffusion rates on MFI of n-hexane, 2-methylpentane and 2,3-dimethylbutane are in the same order of magnitude. However, the diffusion rate of 2,2-dimethylbutane is two orders of magnitude lower than rates of the other isomers. In the binary mixtures the components interact and the difference between the diffusion rates of the components decreases. The MFI zeolite presents equilibrium selectivity towards the less branched isomers. In conclusion, a separation process for linear/mono-branched alkanes + double-branched alkanes, has to be based on its equilibrium properties and not based on adsorption kinetics.  相似文献   

14.
Separation of carbon dioxide and methane is an important issue in upgrading low-quality natural gas. Adsorption equilibria and kinetics of CO(2) and CH(4) on a copper metal-organic framework (MOF), Cu(hfipbb)(H(2)hfipbb)(0.5) [H(2)hfipbb=4,4'-(hexafluoroisopropylidene) bis(benzoic acid)], were investigated to evaluate the feasibility of removing CO(2) from CH(4) in a pressure swing adsorption process using this new MOF adsorbent. The heat of adsorption of CO(2) on the Cu-MOF at zero-coverage (29.7 kJ/mol) is much lower than those on a carbon molecular sieve and a zeolite 5A adsorbent; and the heat of adsorption of CH(4) on the Cu-MOF (21.4 kJ/mol) is similar to that on the zeolite 5A adsorbent and smaller than that on a carbon molecular sieve. The Cu-MOF being investigated has apertures of (~3.5 × 3.5 ?), which favors the kinetically controlled separation of CO(2) and CH(4). The kinetic selectivity is found to be 26 at 298 K, and the overall selectivity (combining the equilibrium and kinetic effects) is about 25 for an adsorption separation process. These results suggest that the Cu-MOF adsorbent is an attractive alternative adsorbent for the CO(2)/CH(4) separation.  相似文献   

15.
Adsorption equilibria of methane, ethane, and n-butane on a high surface area activated carbon prepared from Brazilian coconut shells is examined in this study. The material shows high capacities for the alkanes tested. A group-contribution theory is used to predict adsorption isotherms for all three components with very good accuracy employing one set of model parameters. The theory is also used to observe trends in isosteric heat of adsorption as a function of loading at various temperatures.  相似文献   

16.
Separation of olefin/paraffin is an energy-intensive and difficult separation process in petrochemical industry. Energy-efficient adsorption process is considered as a promising alternative to the traditional cryogenic distillation for separating olefin/paraffin mixtures. In this work, we explored the feasibility of adsorptive separation of olefin/paraffin mixtures using a magnesium-based metal-organic framework, Mg-MOF-74. Adsorption equilibria and kinetics of ethane, ethylene, propane, and propylene on a Mg-MOF-74 adsorbent were determined at 278, 298, and 318 K and pressures up to 100 kPa. A dual-site Sips model was used to correlate the adsorption equilibrium data, and a micropore diffusion model was applied to extract the diffusivities from the adsorption kinetics data. A grand canonical Monte Carlo simulation was conducted to calculate the adsorption isotherms and to elucidate the adsorption mechanisms. The simulation results showed that all four adsorbate molecules are preferentially adsorbed on the open metal sites where each metal site binds one adsorbate molecule. Propylene and propane have a stronger affinity to the Mg-MOF-74 adsorbent than ethane and ethylene because of their significant dipole moments. Adsorption equilibrium selectivity, combined equilibrium and kinetic selectivity, and adsorbent selection parameter for pressure swing adsorption processes were estimated. The relatively high values of adsorption selectivity suggest that it is feasible to separate ethylene/ethane, propylene/propane, and propylene/ethylene pairs in a vacuum swing adsorption process using Mg-MOF-74 as an adsorbent.  相似文献   

17.
The principles of pressure swing adsorption (PSA) for carbon dioxide capture are reviewed. Previous work on PSA, relevant modeling and experimental investigation for specifically carbon dioxide separation are also presented and significant findings highlighted. Simple rules for PSA process design based on analysis of the inherent properties of adsorbate-adsorbent systems encompassing equilibrium isotherm, adsorption kinetics, shape of breakthrough curves, screening and selection of adsorbent, bed porosity, adsorption time, purge to feed ratio, residence time, pressure equalization and rinse steps are provided to promote better understanding of the technology so that it gains wider acceptance in the future to address the global environmental concern, particularly in the removal of carbon dioxide as a greenhouse gas.  相似文献   

18.
An integrated chromatographic process comprising ion exchange (IEC) and hydrophobic interaction chromatography (HIC) for isolating a target protein form multicomponent mixtures has been analyzed. The model mixture contained immunoglobulin G that was the key product of the separation process, cytochrome C and ovalbumin. The adsorption characteristics and the mass transport kinetics of the model proteins have been determined along with their dependencies on the operating variables such as pH, temperature and the salt concentration for IEC as well as HIC media. Limitations of the process efficiency resulting from kinetic effects, solubility constraints and the necessity of the mobile phase exchange between chromatographic steps have been discussed. To improve the performance of the integrated process the multiple-injection technique has been suggested. This technique consisted in loading feed mixtures dissolved in a good solvent onto the column by several small-volume injections under conditions of strong protein adsorption. It allowed diminishing interactions between the sample-solvent and protein and elimination of undesired effects such as band splitting and band broadening. For the process design and optimization a dynamic model has been used accounting for thermodynamics and kinetics of the process. The optimization results indicated superiority of the multiple-injection technique over standard isocratic injections in terms of the process yield and productivity.  相似文献   

19.
为研究影响碳基吸附剂吸附超临界温度气体的主要因素,选择石墨化热解碳黑BP280和Ajax活性炭,分析超临界温度高压甲烷在其上的吸附平衡。应用容积法,在压力0~20.5 MPa、温度253 K~313 K测定甲烷的吸附平衡数据,并由等量吸附线标绘和亨利定律常数确定等量吸附热。引入通用吸附等温方程,再由方程的Langmuir标绘确定最大吸附容量,进而通过方程的线性化计算吸附平衡态中甲烷分子的作用能。结果表明,甲烷在两种吸附剂上的最大吸附容量均随温度而变化,并都小于液态甲烷的密度;甲烷在碳黑和活性炭上的等量吸附热分别为11.9 kJ/mol~12.5 kJ/mol和17.5 kJ/mol~22.5 kJ/mol,体现了两种吸附剂不同的表面能量分布;甲烷分子间作用能随吸附量的变化特点反映了超临界温度甲烷以类似于压缩气体状态聚集的特点和吸附剂结构上的差异。碳基吸附剂的比表面积和微孔容积是影响其储存甲烷容量的重要因素。  相似文献   

20.
The adsorption of pure methane and ethane in BPL activated carbon has been measured at temperatures between 264 and 373 K and at pressures up to 3.3 MPa with a bench-scale high-pressure open-flow apparatus. The same apparatus was used to measure the adsorption of binary methane/ethane mixtures in BPL at 301.4 K and at pressures up to 2.6 MPa. Thermodynamic consistency tests demonstrate that the data are thermodynamically consistent. In contrast to two sets of data previously published, we found that the adsorption of binary methane/ethane in BPL behaves ideally (in the sense of obeying ideal adsorbed solution theory, IAST) throughout the pressure and gas-phase composition range studied. A Tian-Calvet type microcalorimeter was used to measure low-pressure isotherms, the isosteric heats of adsorption of pure methane and ethane in BPL activated carbon, and the individual heats of adsorption in binary mixtures, at 297 K and at pressures up to 100 kPa. The mixture heats of adsorption were consistent with IAST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号