首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmissible spongiform encephalopathies in humans and in animals are fatal neuro-degenerative diseases with long incubation times. The putative cause of these diseases is a normal host protein, the prion protein, that becomes altered. This abnormal prion protein is found mostly in the brains of infected individuals in later stages of the disease, but also can be found in lymphoid and other tissues in lower amounts. In order to eradicate this disease in animals, it is important to develop a system that can concentrate the abnormal prion protein and an assay that is very sensitive. The sensitivity that can be achieved with capillary electrophoresis makes it possible to detect the abnormal protein in blood. A peptide from the carboxyl terminal region, amino acid positions 218-232, was labeled with fluorescein during the synthesis of the peptide at the amino terminus. Antibodies that have been produced to this peptide were affinity purified and used in a capillary electrophoresis immunoassay. The amount of fluorescein labeled peptide in the capillary was 50 amol. Blood was obtained from normal sheep and elk, from sheep infected with scrapie and elk infected with chronic wasting disease. Buffy coats and plasma were prepared by a conventional method. After treatment with proteinase K, which destroys the normal protein but not the altered one, the blood fractions were extracted and tested in the capillary electrophoresis immunoassay for the abnormal prion protein. The abnormal prion protein was detected in fractions from blood from infected animals but not from normal animals. This assay makes a pre-clinical assay possible for these diseases and could be adapted to test for the abnormal prion protein in process materials that are used for manufacture of pharmaceuticals and products for human consumption.  相似文献   

2.
Gellan gum beads are presented as a novel substrate for protein immobilization and immobilized protein activity measurements. The optical transparency of the gellan beads down to 200 nm provides a method for direct quantitation of the amount of protein immobilized onto the beads. The ability to utilize these beads in a non-aqueous activation step allowed for a fourfold increase in the amount of protein immobilized, and this method was used to immobilize Protein A onto gellan beads at a final yield of 1.42+/-0.07 mg of Protein A/g of beads. The optical transparency also allowed for detection of the activity of the immobilized Protein A simply by measuring the absorbance of the beads following capture of rabbit IgG. This activity measurement method was compared with a traditional method utilizing the amount of protein remaining in solution after the IgG capture step. The traditional method yielded an activity measurement of 10.9+/-0.2 mg IgG/mg of Protein A, while the absorbance method showed an activity of only 7.5+/-0.3 mg IgG/mg of Protein A. The difference can be explained by the more direct measurement used in the absorbance method. The optical transparency of the beads was also evaluated in a fluorescence based IgG capture experiment, showing that detection of fluorescent IgG captured on the beads was possible with no interference from the beads.  相似文献   

3.
In this paper, we first presented a novel method for quantification of circulating DNA in human serum based on capillary zone electrophoresis with laser-induced fluorescence detection (CZE-LIF). The serum was digested by proteinase to release free DNA, and then CZE-LIF system was used for the quantification of total circulating DNA. This method was successfully used to quantify the circulating DNA levels in sera from healthy individuals and certain cancer patients.We found the significantly elevated circulating DNA levels in certain prostate cancer patients. Our results demonstrated that CZE-LIF system has good linearity, excellent sensitivity (0.5 ng/mL DNA),satisfactory reproducibility (RSDs in one day and between days were both less than 5%) and reliability, and is well suitable to the quantification of the circulating DNA in human serum or plasma.  相似文献   

4.
A selective and sensitive fluorometric determination method for native fluorescent peptides has been developed. This method is based on intramolecular fluorescence resonance energy transfer (FRET) detection in a liquid chromatography (LC) system following precolumn derivatization of the amino groups of tryptophan (Trp)-containing peptides. In this detection process, we monitored the FRET from the native fluorescent Trp moieties (donor) to the derivatized fluorophore (acceptor). From a screening study involving 10 fluorescent reagents, we found that o-phthalaldehyde (OPA) generated FRET most effectively. The OPA derivatives of the native fluorescent peptides emitted OPA fluorescence (445 nm) through an intramolecular FRET process when they were excited at the excitation maximum wavelength of the Trp-containing peptides (280 nm). The generation of FRET was confirmed through comparison with the analysis of a non-fluorescent peptide (C-reactive protein fragment (77 - 82)) performed using LC and a three-dimensional fluorescence detection system. We were able to separate the OPA derivatives of the Trp-containing peptides when performing LC on a reversed-phase column. The detection limits (signal-to-noise ratio = 3) for the Trp-containing peptides, at a 20-microL injection volume, were 41 - 180 fmol. The sensitivity of the intramolecular FRET-forming derivatization method is higher than that of the system that takes advantage of the conventional detection of OPA derivatives. Moreover, native non-fluorescent amines and peptides in the sample monitored at FRET detection are weaker than those of conventional fluorescence detection.  相似文献   

5.
The ultratrace level detection and the separation of lanthanide ions (Ln3+) were achieved using capillary zone electrophoresis with laser induced fluorescent detection (CZE-LIF) using an aromatic polyaminocarboxylate ligand synthesized in our previous work. The ligand forms kinetically stable Ln complexes at the pre-capillary derivatizing step. It effectively avoids quenching processes of the ligand-centered fluorescence through complexation with Ln3+ without paramagnetic and heavy atom effects because of the distance between the chelating and the antenna moieties. During the on-capillary separation step, the mother Ln complexes competitively form ternary complexes with the auxiliary ligands, iminodiacetate and citrate, which provide different mobilities for each of the Ln3+ complexes. The emissively labeled Ln3+ complexes were efficiently separated, based on the ternary complex equilibrium. Since the carrier buffer employed was free from emissive ligands, a high signal to noise ratio was obtained. A lower detection limit of 9.1 x 10(-11) mol dm(-3) (15.6 ng dm(-3), 0.46 attomole as an amount basis) was successfully achieved typically for Lu3+ with a simple CZE mode. We propose a combination of a pre-capillary and an on-capillary complexing technique as a method that provides both high sensitivity and high resolution.  相似文献   

6.
A capillary zone electrophoresis–laser-induced fluorescence detection (CZE-LIF) method was developed for the simultaneous analysis of disaccharides derived from heparan sulfate, chondroitin sulfate/dermatan sulfate, hyaluronan, and keratan sulfate. Glycosaminoglycans (GAGs) were first depolymerized with the mixture of GAG lyases (heparinase I, II, III and chondroitinase ABC and chondroitinase AC II) and GAG endohydrolase (keratinase II) and the resulting disaccharides were derivatized by reductive amination with 2-aminoacridone. Nineteen fluorescently labeled disaccharides were separated using 50 mM phosphate buffer (pH 3.3) under reversed polarity at 25 kV. Using these conditions, all the disaccharides examined were baseline separated in less then 25 min. This CZE-LIF method gave good reproducibility for both migration time (≤1.03 % for intraday and ≤4.4 % for interday) and the peak area values (≤5.6 % for intra- and ≤8.69 % for interday). This CZE-LIF method was used for profiling and quantification of GAG derivative disaccharides in bovine cornea. The results show that the current CZE-LIF method offers fast, simple, sensitive, reproducible determination of disaccharides derived from total GAGs in a single run.
Figure
Separation of 19 glycosaminoglycan-derived disaccharides using CZE. These disaccharides are HA (pink), HS (blue), CS (green) and KS (red). Residual AMAC tag is shown in orange.  相似文献   

7.
The analysis of glycoprotein isoforms is of high interest in the biomedical field and clinical chemistry. Many studies have demonstrated that some glycoprotein isoforms could serve as biomarkers for several major diseases, such as cancers and vascular diseases, among others. Capillary zone electrophoresis (CZE) is a well-established technique to separate glycoprotein isoforms, however, it suffers from limited sensitivity when UV-Vis detection is used. On the other hand, with laser-induced fluorescence (LIF) detection, derivatization reaction to render the proteins fluorescent can destroy the resolution of the isoforms. In this work, a derivatization procedure through the thiol groups of glycoproteins using either 5-(iodoacetamide) fluorescein (5-IAF) or BODIPY iodoacetamide is presented with the model protein of alpha-1-acid glycoprotein (AGP). The derivatization process presented enabled high-resolution analysis of AGP isoforms by CZE-LIF. The derivatization procedure was successfully applied to label AGP from samples of serum and secretome of artery tissue, enabling the separation of the AGP isoforms by CE-LIF in natural samples at different concentration levels.  相似文献   

8.
Zhang P  Ren J  Shen Z 《Electrophoresis》2004,25(12):1823-1828
We present a method for the quantification of circulating DNA in serum by capillary zone electrophoresis (CZE) with laser-induced fluorescence detection (LIF). The serum was digested by proteinase to release free DNA. SYBR Gold was utilized as DNA intercalating dye, fluorescein as internal standard (ISTD). CZE-LIF was applied for the separation and quantification of total circulating DNA. Good linearity (R = 0.9992) in the low range of DNA concentrations (0.5-40 ng/mL) and a detection limit of 0.5 ng/mL for DNA (S/N = 3) were obtained. Our data demonstrated that CZE-LIF system has a good linearity with excellent sensitivity and satisfactory reproducibility in the quantification of circulating DNA in serum. This method was successfully used for the quantification of circulating DNA levels in serum. We observed that the circulating DNA levels in certain cancer patients were significantly higher than that in healthy individuals. Compared to current methods, our protocol does not need the extraction of DNA from serum. Our preliminary results have illustrated that CZE-LIF system is simple, rapid, and sensitive, and it is well suitable for large-scale quantification of circulating DNA levels in clinical diagnosis.  相似文献   

9.
A highly sensitive and selective capillary zone electrophoresis with laser-induced fluorescence detection (CZE-LIF) for Al(3+) and Ga(3+) was developed using a calcein 4',5'-isomer as a pre-capillary complexing agent. Direct fluorescent detection without an agent added to the carrier buffer provided the notable detection limits of 3.9x10(-10) and 4.6x10(-10)moldm(-3) for Al and Ga, respectively. By applying this system successfully to a river water sample, its potential for practical applications was ascertained. A comparison of three aromatic polyaminocarboxylate ligands related to the coordination structure and the distance between the fluorophore and the chelating moiety, revealed some interesting factors regarding their selectivity.  相似文献   

10.
The physiological form of the prion protein is normally expressed in mammalian cell and is highly conserved among species, although its role in cellular function remains elusive. Available evidence suggests that this protein is essential for neuronal integrity in the brain, possibly with a role in copper metabolism and cellular response to oxidative stress. In prion diseases, the benign cellular form of the protein is converted into an insoluble, protease-resistant abnormal scrapie form. This conversion parallels a conformational change of the polypeptide from a predominantly alpha-helical to a highly beta-sheet secondary structure. The scrapie form accumulates in the central nervous system of affected individuals, and its protease-resistant core aggregates into amyloid fibrils outside the cell. The pathogenesis and molecular basis of the nerve cell loss that accompanies this process are not understood. Limited structural information is available on aggregate formation by this protein as the possible cause of these diseases and on its toxicity. A large amount of structure-activity studies is based on the prion fragment approach, but the resulting information is often difficult to untangle. This overview focuses on the most relevant structural and functional aspects of the prion-induced conformational disease linked to peptides derived from the unstructured N-terminal and globular C-terminal domains.  相似文献   

11.
An analytical method is described for detection of endogenous disease-associated prion protein in the buffy coat fraction from the blood of sheep infected with scrapie. The method has been improved and evaluated for its performance in the preclinical diagnosis of ovine transmissible spongiform encephalopathies. The test system uses a protocol for sample preparation that includes extraction and concentration and a test method that uses a liquid-phase competitive immunoassay for prion protein. Antibodies directed to a peptide sequence at the C-terminus of the prion protein (PrP) and a fluorescein-labeled peptide conjugate are used in the assay. Free zone capillary electrophoresis with laser-induced fluorescence for detection is used to separate the antibody-bound fluorescently labeled peptide and free labeled peptide. In this assay, the PrP competes with the fluorescently labeled peptide for limited antibody binding sites, which results in a reduction of the peak representing the immunocomplex of the antibody bound to the fluorescently labeled peptide. When blood samples from scrapie-infected sheep aged 7-12 months and of the scrapie-susceptible PrP genotypes VRQ/VRQ and VRQ/ARQ were analyzed, the abnormal PrP was found in blood samples. These results correlated with the post-mortem diagnosis of scrapie. The sheep were preclinical and appeared normal at the time of testing but later died with clinical disease approximately 12 months after testing. In older animals, and those with clinical signs, a smaller percentage of animals tested positive. This study has demonstrated that this technology can be used as a sensitive, rapid preclinical test to detect the disease-associated PrP in the blood of scrapie-infected sheep. Improvements in the extraction protocol and capillary electrophoresis conditions will enhance the robustness of this test.  相似文献   

12.
A facile and sensitive aptamer‐based protocol has been developed for protein assay on microfluidic platform with fluorescence detection using an off‐chip microarray scanner. Aptamer‐functionalized magnetic beads were used to capture thrombin that binds to a second aptamer fluorescently labeled by Cy3. Experimental conditions, such as incubation time and temperature, washing time, interfering proteins, and aptamer, etc., were optimized for the microchip method. This work demonstrated there was a good relationship between fluorescence intensity and thrombin concentration in the range of 65–1000 ng/mL with the RSD less than 8%. Notably, an analysis only needs 1 μL volume of sample injection and this system can capture extremely tiny amount thrombin (0.4 fmol). This method has been successfully applied to assay of thrombin in human serum with the recovery of 79.74–95.94%.  相似文献   

13.
An alternative approach for fabricating a protein array at nanoscale is suggested with a capability of characterization and/or localization of multiple components on a nanoarray. Fluorescent micro- and nanobeads each conjugated with different antibodies are assembled by size-dependent self-assembly (SDSA) onto nanometer wells that were created on a polymethyl methacrylate (PMMA) substrate by electron beam lithography (EBL). Antibody-conjugated beads of different diameters are added serially and electrostatically attached to corresponding wells through electrostatic attraction between the charged beads (confirmed by zeta potential analysis) and exposed p-doped silicon substrate underneath the PMMA layer. This SDSA method is enhanced by vibrated-wire-guide manipulation of droplets on the PMMA surface containing nanometer wells. Saturation rates of antibody-conjugated beads to the nanometer patterns are up to 97% under one component and 58–70% under two components nanoarrays. High-density arrays (up to 40,000 wells) could be fabricated, which can also be multi-component. Target detection utilizes fluorescence resonance energy transfer (FRET) from fluorescent beads to fluorescent-tagged secondary antibodies to Octamer-4 (Oct4), which eliminates the need for multiple steps of rinsing. The 100 nm green beads are covalently conjugated with anti-Oct4 to capture Oct4 peptides (39 kDa); where the secondary anti-Oct4 and F(ab)2 fragment of anti-gIgG tagged with phycoerythrin are then added to function as an indicator of Oct4 detection. FRET signals are detected through confocal microscopes, and further confirmed by Fluorolog3 spectrofluorometer. The success rates of detecting Oct4 are 32% and 14% of the beads in right place under one and two component nanoarrays, respectively. Ratiometric FRET is used to quantify the amount of Oct4 peptides per each bead, which is estimated about 2 molecules per bead.  相似文献   

14.
Yang WC  Yeung ES  Schmerr MJ 《Electrophoresis》2005,26(9):1751-1759
The development of capillary electrophoresis (CE)-based competitive immunoassay for prion protein (PrP) using carboxymethyl beta-cyclodextrin (CM-beta-CD) as a buffer additive is described here. The assay was based on the competitive binding of PrP and a fluorescein-labeled peptide from the prion protein with a limiting amount of specific antibody. The amount of both free and fluorescein-labeled peptide bound to antibody (immunocomplex) were determined by CE with laser-induced fluorescence detection. In the presence of PrP, the peak height ratio of the immunocomplex and the free peptide was altered compared to the control. These changes were directly proportional to the amount of PrP present. The fluorescently labeled peptide spanning amino acid positions 140-158 of the PrP and its corresponding monoclonal antibody is reported here. The reaction times of the antibody with either the peptide or the recombinant PrP was less than 1 min and is a large improvement over the 16-18 h required to achieve equilibrium for polyclonal antibodies. CM-beta-CD was explored as a buffer additive to suppress analyte adsorption and enhance separation selectivity in the CE analysis. A fast (1.1 min), selective (resolution 4.7), and reproducible (relative standard deviations of migration time for free and bound fluorescein isothiocyanate (FITC)-peptide 0.56% and 0.64%, respectively) separation was obtained with 0.6% CM-beta-CD in 25 mM N-tris(hydroxymethyl)methyl-3-aminopropanesulfonic acid (TAPS) at pH 8.8. The concentration detection limit of the assay for recombinant PrP was determined to be 80 ng/mL (or mass detection limit 1 pg). When blood samples from scrapie-infected sheep and from normal sheep were tested, the results of the blood assay were consistent with scrapie status of the sheep as determined post mortem by Western blot analysis. Development of this assay will lead to a potentially robust, rapid, and specific preclinical diagnosis for transmissible spongiform encephalopathies (TSEs) in animals and humans.  相似文献   

15.
In this study, the combination of autofluorescent proteins and fluorescence quenching polymers was shown to be a design which can increase the selectivity and sensitivity of immunosensors. With this objective, the conducting polymer polypyrrole (Ppy) was used as a matrix for immobilization of proteins, which enables biological recognition of the analyte, and as a fluorescence quencher, which increases the selectivity of fluorescence-based detection. In this study, bovine leukemia virus proteins gp51 were immobilized within the Ppy matrix and formed a polymeric layer with affinity for antibodies against protein gp51 (anti-gp51). The anti-gp51 antibodies are present at high levels in the blood serum of cattle infected by bovine leukemia virus. Secondary antibodies labeled with horseradish peroxidase (HRP) were used as specific fluorescent probes for detection of a particular target, because the fluorescence of HRP was readily detectable at the required sensitivity. The Ppy was used as fluorescent background, because its fluorescence was almost undetectable when excited by near UV light at 325 nm. Moreover the Ppy quenched the fluorescence of some fluorescent agents including fluorescein-5(6)-isothiocyanate (fluorescein), rhodamine B, and HRP by almost 100% when these fluorescent agents were adsorbed on the surface of Ppy. It is predicted that Ppy-induced fluorescence quenching could be used in the design of immunosensors to increase selectivity and sensitivity.  相似文献   

16.
We report the characterization of early aggregates in the self-assembly of prion peptides using nonlinear and ultrafast time-resolved fluorescence spectroscopy. The dye-labeled peptide and dye/peptide guest-host systems were used to demonstrate the feasibility of the new approach. By measuring the two-photon absorption cross-section, small aggregates of the dye labeled peptide were characterized. Ultrafast time-resolved fluorescence anisotropy spectroscopy reveals the packing state (microenvironment) of the probes to be tightly associated with aggregates and associated with aggregation progression of the peptides. Fluorescence intensity decay shows a correlation with growth of aggregates having a high level of structured beta-sheet content. A new binding ligand Cascade Yellow shows promise for beta-sheet recognition of prion peptide nanostructures. These findings may have implications for in vivo studies of neurotoxic aggregates targeting with fluorescence markers. Also, these results may provide insight into molecular design of peptide-based nanomaterials.  相似文献   

17.
Sensitive quantitation of prions in biological samples is an extremely important and challenging analytical problem. Prions are the cause of several fatal neurodegenerative diseases known as transmissible spongiform encephalopathies (TSEs). At this time, there are no methods to diagnose TSEs in live animals or to assure a prion-free blood supply for humans. Prions have been shown to be present in blood by transfusion experiments, but based on the amount of infectivity found in these types of experiments, the amount of misfolded prion protein in blood is estimated to be only 30 to 625 amol/mL. More sensitive detection of prions in brain would allow earlier detection of disease and assure a safer food supply. We studied quantitation of the prion protein by use of nanoscale liquid chromatography coupled to a tandem mass spectrometer using the multiple reaction monitoring mode of operation. We developed a method based on the detection of VVEQMCTTQYQK obtained by reduction, alkylation, and digestion with trypsin of the prion protein. Detection of VVEQMCTTQYQK was more sensitive than for the derivative with phenylisothiocyanate (PITC) because of decreased ionization efficiency of the PITC-derivatized peptides. The VVEQMCTTQYQK method has a LOD of 20 to 30 amol for pure standards. Proof of principle is demonstrated by quantitation of the amount of PrP 27-30 in the brains of terminally ill Syrian hamsters.  相似文献   

18.
A high-performance liquid chromatographic method with fluorescence detection is described for the determination of substance P, one of the neuropeptides, in the hypothalamus tissue of rat brain. The detection is based on on-line post-column fluorescence derivatization selective for arginine-containing peptides. The endogenous substance P-like arginine-containing peptide extracted from the tissue and [D-Phe11]-neurotensin as an internal standard were separated from various interfering substances on a reversed-phase column (TSKgel ODS-120T) by gradient elution with acetonitrile-phosphate buffer (pH 2.3). The peptides in the eluate were then automatically converted into fluorescent derivatives for detection by reaction with benzoin. Arginine-containing fragments produced by the enzyme reaction of substance P in the chromatographic fraction with trypsin were also detected, for the identification of the endogenous substance P-like arginine-containing peptide. The method was sensitive enough to permit the quantitative determination of the peptide at a concentration as low as 580 fmol/mg of protein in the brain homogenate. The concentration values of the substance P-like arginine-containing peptide in the tissue were 9.45 +/- 1.50 pmol/mg of protein (six determinations).  相似文献   

19.
A selective and sensitive micellar electrokinetic chromatography method with laser-induced fluorescence detection was developed for the quantification of ephedrine (E) and pseudoephedrine (PE) derivatized with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. After conducting a series of optimizations, a running buffer of 10 mM sodium borate + 16 mM SDS was used for separation of the derivatives. A linear relationship for E and PE was obtained in the range of 0.044-6.6 microg mL(-1) (correlation coefficient: 0.9943 for E, 0.9946 for PE), and the detection limits for E and PE were 0.70 and 0.30 ng mL(-1), respectively. The sensitivity of E and PE was improved by several multiples of ten over those of CZE-LIF method. The method was applied to the analysis of the two alkaloids in ephedra herbal medicine and preparations with recoveries in the range of 98.3-107.1%.  相似文献   

20.
A method for the isolation and localization of proteins and peptides from histological sections of rat and human brain by immunoblotting is described. For validation, the well-characterized protein neurophysin was electrophoretically transferred from formaldehyde-fixed or fresh tissue sections onto a nitrocellulose membrane. Neurophysin on the nitrocellulose membrane was detected by a specific antibody reaction. The antibody against neurophysin was visualized either by using secondary antibodies, conjugated with peroxidase or by protein A gold, followed by enhancement with silver. With this simple and fast method, neurophysin (or other proteins and peptides) can be identified on nitrocellulose membranes in areas that correspond to anatomically defined regions. Since the procedure combines the advantages of precise regional localization of polypeptides with the specificity of antibody-antigen reactions, the method may prove useful for rapid screening of the distribution of peptides or proteins in (brain) tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号