首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Experimental results for the rate of the association reaction H3O+ + H2O (+M) --> H5O2(+) (+M) obtained with the Cinetique de Reactions en Ecoulement Supersonique Uniforme flow technique are reported. The reaction was studied in the bath gases M=He and N2, over the temperature range of 23-170 K, and at pressures between 0.16 and 3.1 mbar. At the highest temperatures, the reaction was found to be close to the limiting low-pressure termolecular range, whereas the limiting high-pressure bimolecular range was approached at the lowest temperatures. Whereas the low-pressure rate coefficients can satisfactorily be reproduced by standard unimolecular rate theory, the derived high-pressure rate coefficients in the bath gas He at the lowest temperatures are found to be markedly smaller than given by simple ion-dipole capture theory. This result differs from previous observations on the related reaction NH4(+) + NH3 (+M) --> N2H7(+) (+M). This observation is tentatively attributed to more pronounced contributions of the valence part of the potential-energy surface to the reaction in H5O2(+) than in N2H7(+). Falloff curves of the reaction H3O+ + H2O (+M) --> H5O2(+) (+M) are constructed over wide ranges of conditions and represented in compact analytical form.  相似文献   

2.
3.
The reaction CH(3) + O(2) (+M) --> CH(3)O(2) (+M) was studied in the bath gases Ar and N(2) in a high-temperature/high-pressure flow cell at pressures ranging from 2 to 1000 bar and at temperatures between 300 and 700 K. Methyl radicals were generated by laser flash photolysis of azomethane or acetone. Methylperoxy radicals were monitored by UV absorption at 240 nm. The falloff curves of the rate constants are represented by the simplified expression k/k(infinity) approximately [x/(1 + x)]F(cent)(1/{1+[(log)(x)/)(N)(]2}) with x = k(0)/k(infinity) F(cent) approximately 0.33, and N approximately 1.47, where k(0) and k(infinity) denote the limiting low and high-pressure rate constants, respectively. At low temperatures, 300-400 K, and pressures >300 bar, a fairly abrupt increase of the rate constants beyond the values given by the falloff expressions was observed. This effect is attributed to a contribution from the radical complex mechanism as was also observed in other recombination reactions of larger radicals. Equal limiting low-pressure rate constants k(0) = [M]7 x 10(-31)(T/300 K)(-3.0) cm(6) molecule(-2) s(-1) were fitted for M = Ar and N(2) whereas limiting high-pressure rate constants k(infinity) = 2.2 x 10(-12)(T/300 K)(0.9) cm(3) molecule(-1) s(-1) were approached. These values are discussed in terms of unimolecular rate theory. It is concluded that a theoretical interpretation of the derived rate constants has to be postponed until better information of the potential energy surface is available. Preliminary theoretical evaluation suggests that there is an "anisotropy bottleneck" in the otherwise barrierless interaction potential between CH(3) and O(2).  相似文献   

4.
The rate constants of the recombination reaction of p-fluorobenzyl radicals, p-F-C6H4CH2 + p-F-C6H4CH2 (+M) --> C14H12F2 (+M), have been measured over the pressure range 0.2-800 bar and the temperature range 255-420 K. Helium, argon, and CO2 were employed as bath gases (M). At pressures below 0.9 bar in Ar and CO2, and 40 bar in He, the rate constant k1 showed no dependence on the pressure and the nature of the bath gas, clearly indicating that it had reached the limiting high-pressure value of the energy-transfer (ET) mechanism (k(1,infinity)ET). A value of k(1,infinity)ET(T) = (4.3 +/- 0.5) x 10(-11) (T/300 K)(-0.2) cm3 molecule(-1) s(-1) was determined. At pressures above about 5 bar, the k1 values in Ar and CO2 were found to gradually increase in a pressure range where according to energy-transfer mechanism, they should remain at the constant value k(1,infinity)ET. The enhancement of the recombination rate constant beyond the value k(1,infinity)ET increased in the order He < Ar < CO2, and it became more pronounced with decreasing temperature. The dependences of k1 on pressure, temperature, and the bath gas were similar to previous observations in the recombination of benzyl radicals. The effect of fluorine-substitution of the benzyl ring on k1 values is discussed. The present results confirm the significant role of radical complexes in the recombination kinetics of benzyl-type radicals in the gas-liquid transition range. The observations on a rate enhancement beyond the experimental value of k(1,infinity)ET at elevated densities up to the onset of diffusion-control are consistently explained by the kinetic contribution of a "radical-complex" mechanism which is solely based on standard van der Waals interaction between radicals and bath gases.  相似文献   

5.
High pressure experiments on the OH + NO2 reaction are presented for 3 different temperatures. At 300 K, experiments in He (p = 2-500 bar) as well as in Ar (p = 2-4 bar) were performed. The rate constants obtained in Ar agree well with values which have been reported earlier by our group (Forster, R.; Frost, M.; Fulle, D.; Hamann, H. F.; Hippler, H.; Schlepegrell, A.; Troe, J. J. Chem. Phys. 1995, 103, 2949. Fulle, D.; Hamann, H. F.; Hippler, H.; Troe, J. J. Chem. Phys. 1998, 108, 5391). In contrast, the rate coefficients determined in He were found to be 15-25% lower than the values given in our earlier publications. Additionally, results for He as bath gas at elevated temperatures (T = 400 K, p = 3-150 bar; T = 600 K, p = 3-150 bar) are reported. The results obtained at elevated pressures are found to be in good agreement with existing literature data. The observed falloff behavior is analyzed in terms of the Troe formalism taking into account two reaction channels: one yielding HNO3 and one yielding HOONO. It is found that the extracted parameters are in agreement with rate constants for vibrational relaxation and isotopic scrambling as well as with experimentally determined branching ratios. Based on our analysis we determine falloff parameters to calculate the rate constant for atmospheric conditions.  相似文献   

6.
The recombination rate constant for the NH(2)(X(2)B(1)) + NH(2)(X(2)B(1)) → N(2)H(4)(X(1)A(1)) reaction in He, Ne, Ar, and N(2) was measured over the pressure range 1-20 Torr at a temperature of 296 K. The NH(2) radical was produced by 193 nm laser photolysis of NH(3) dilute in the third-body gas. The production of NH(2) and the loss of NH(3) were monitored by high-resolution continuous-wave absorption spectroscopy: NH(2) on the (1)2(21) ← (1)3(31) rotational transition of the (0,7,0)A(2)A(1) ← (0,0,0) X(2)B(1) vibronic band and NH(3) on either inversion doublet of the (q)Q(3)(3) rotational transition of the ν(1) fundamental. Both species were detected simultaneously following the photolysis laser pulse. The broader Doppler width of the NH(2) spectral transition allowed temporal concentration measurements to be extended up to 20 Torr before pressure broadening effects became significant. Fall-off behavior was identified and the bimolecular rate constants for each collision partner were fit to a simple Troe form defined by the parameters, k(0), k(inf), and F(cent). This work is the first part of a two part series in which part 2 will discuss the measurements with more efficient energy transfer collision partners CH(4), C(2)H(6), CO(2), CF(4), and SF(6). The pressure range was too limited to extract any new information on k(inf), and k(inf) was taken from the theoretical calculations of Klippenstein et al. (J. Phys. Chem A 2009, 113, 10241) as k(inf) = 7.9 × 10(-11) cm(3) molecule(-1) s(-1) at 296 K. The individual Troe parameters were: He, k(0) = 2.8 × 10(-29) and F(cent) = 0.47; Ne, k(0) = 2.7 × 10(-29) and F(cent) = 0.34; Ar, k(0) = 4.4 × 10(-29) and F(cent) = 0.41; N(2), k(0) = 5.7 × 10(-29) and F(cent) = 0.61, with units cm(6) molecule(-2) s(-1) for k(0). In the case of N(2) as the third body, it was possible to measure the recombination rate constant for the NH(2) + H reaction near 20 Torr total pressure. The pure three-body recombination rate constant was (2.3 ± 0.55) × 10(-30) cm(6) molecule(-2) s(-1), where the uncertainty is the total experimental uncertainty including systematic errors at the 2σ level of confidence.  相似文献   

7.
We report rate coefficients at 293 K for the collisional relaxation of H2O molecules from the highly excited /04>(+/-) vibrational states in collisions with H2O, Ar, H2, N2, and O2. In our experiments, the mid R:04(-) state is populated by direct absorption of radiation from a pulsed dye laser tuned to approximately 719 nm. Evolution of the population in the (/04>(+/-)) levels is observed using the combination of a frequency-quadrupled Nd:YAG laser, which selectively photolyses H2O(/04>(+/-)), and a frequency-doubled dye laser, which observes the OH(v=0) produced by photodissociation via laser-induced fluorescence. The delay between the pulse from the pump laser and those from the photolysis and probe lasers was systematically varied to generate kinetic decays. The rate coefficients for relaxation of H2O(/04>(+/-)) obtained from these experiments, in units of cm3 molecule(-1) s(-1), are: k(H2O)=(4.1+/-1.2) x 10(-10), k(Ar)=(4.9+/-1.1) x 10(-12), k(H2)=(6.8+/-1.1) x 10(-12), k(N2)=(7.7+/-1.5) x 10(-12), k(O2)=(6.7+/-1.4) x 10(-12). The implications of these results for our previous reports of rate constants for the removal of H2O molecules in selected vibrational states by collisions with H atoms (P. W. Barnes et al., Faraday Discuss. Chem. Soc. 113, 167 (1999) and P. W. Barnes et al., J. Chem. Phys. 115, 4586 (2001).) are fully discussed.  相似文献   

8.
Relative integrated cross sections are measured for rotationally inelastic scattering of NO(2Pi(1/2)),hexapole selected in the upper lambda-doublet level of the ground rotational state (j = 0.5), in collisions with He at a nominal energy of 514 cm(-1). Application of a static electric field E in the scattering region, directed parallel or antiparallel to the relative velocity vector v, allows the state-selected NO molecule to be oriented with either the N end or the O end towards the incoming He atom. Laser-induced fluorescence detection of the final state of the NO molecule is used to determine the experimental steric asymmetry, [formula: see text], which is equal to within a factor of (- 1) to the molecular steric effect, S(i-->f) is identical with (sigma(He-->NO) - (sigma(He-->ON))/(sigma(He-->NO) + sigma(He-->ON)). The dependence of the integral inelastic cross section on the incoming lambda-doublet component is also observed as a function of the final rotational (j'), spin-orbit (omega'), and lambda-doublet (epsilon') state. The measured steric asymmetries are significantly larger than previously observed for NO-Ar scattering, supporting earlier proposals that the repulsive part of the interaction potential is responsible for the steric asymmetry. In contrast to the case of scattering with Ar, the steric asymmetry of NO-He collisions is not very sensitive to the value of omega'. However, the lambda-doublet propensities are very different for [omega=0.5(F1)-->omega'= 1.5(F2)] and [omega=0.5(F1)-->omega'=0.5(F1)] transitions. Spin-orbit manifold conserving collisions exhibit a propensity for parity conservation at low deltaj, but spin-orbit manifold changing collisions do not show this propensity. In conjunction with the experiments, state-to-state cross sections for scattering of oriented NO(2Pi) molecules with He atoms are predicted from close-coupling calculations on restricted coupled-cluster methods including single, double, and noniterated triple excitations [J. Klos, G. Chalasinski, M. T. Berry, R.Bukowski, and S. M. Cybulski, J. Chem. Phys. 112, 2195 (2000)] and correlated electron-pair approximation [M. Yang and M. H. Alexander, J. Chem. Phys. 103, 6973 (1995)] potential energy surfaces. The calculated steric asymmetry S(i-->f) of the inelastic cross sections at Etr= 514 cm(-1) is in reasonable agreement with that derived from the present experimental measurements for both spin-manifold conserving (F1-->Fl) and spin-manifold changing (F1 --F2) collisions, except that the overall sign of the effect is opposite. Additionally, calculated field-free integral cross sections for collisions at Etr = 508 cm(-1) are compared to the experimental data of Joswig et al. [J. Chem. Phys.85, 1904 (1986)]. Finally, the calculated differential cross section for collision energy Etr= 491 cm(-1) is compared to experimental data of Westley et al. [J. Chem. Phys. 114, 2669 (2001)] for the spin-orbit conserving transition F1 (j = 0.5) -F1f (j' = 3.5).  相似文献   

9.
The dissociation/recombination reaction CH(4) (+M) ? CH(3) + H (+M) is modeled by statistical unimolecular rate theory completely based on dynamical information using ab initio potentials. The results are compared with experimental data. Minor discrepancies are removed by fine-tuning theoretical energy transfer data. The treatment accounts for transitional mode dynamics, adequate centrifugal barriers, anharmonicity of vibrational densities of states, weak collision and other effects, thus being "complete" from a theoretical point of view. Equilibrium constants between 300 and 5000 K are expressed as K(c) = k(rec)/k(dis) = exp(52,044 K/T) [10(-24.65) (T/300 K)(-1.76) + 10(-26.38) (T/300 K)(0.67)] cm(3) molecule(-1), high pressure recombination rate constants between 130 and 3000 K as k(rec,∞) = 3.34 × 10(-10) (T/300 K)(0.186) exp(-T/25,200 K) cm(3) molecule(-1) s(-1). Low pressure recombination rate constants for M = Ar are represented by k(rec,0) = [Ar] 10(-26.19) exp[-(T/21.22 K)(0.5)] cm(6) molecule(-2) s(-1), for M = N(2) by k(rec,0) = [N(2)] 10(-26.04) exp[-(T/21.91 K)(0.5)] cm(6) molecule(-2) s(-1) between 100 and 5000 K. Weak collision falloff curves are approximated by asymmetric broadening factors [J. Troe and V. G. Ushakov, J. Chem. Phys. 135, 054304 (2011)] with center broadening factors of F(c) ≈ 0.262 + [(T - 2950 K)/6100 K](2) for M = Ar. Expressions for other bath gases can also be obtained.  相似文献   

10.
An updated H2/O2 kinetic model based on that of Li et al. (Int J Chem Kinet 36, 2004, 566–575) is presented and tested against a wide range of combustion targets. The primary motivations of the model revision are to incorporate recent improvements in rate constant treatment and resolve discrepancies between experimental data and predictions using recently published kinetic models in dilute, high‐pressure flames. Attempts are made to identify major remaining sources of uncertainties, in both the reaction rate parameters and the assumptions of the kinetic model, affecting predictions of relevant combustion behavior. With regard to model parameters, present uncertainties in the temperature and pressure dependence of rate constants for HO2 formation and consumption reactions are demonstrated to substantially affect predictive capabilities at high‐pressure, low‐temperature conditions. With regard to model assumptions, calculations are performed to investigate several reactions/processes that have not received much attention previously. Results from ab initio calculations and modeling studies imply that inclusion of H + HO2 = H2O + O in the kinetic model might be warranted, though further studies are necessary to ascertain its role in combustion modeling. In addition, it appears that characterization of nonlinear bath‐gas mixture rule behavior for H + O2(+ M) = HO2(+ M) in multicomponent bath gases might be necessary to predict high‐pressure flame speeds within ~15%. The updated model is tested against all of the previous validation targets considered by Li et al. as well as new targets from a number of recent studies. Special attention is devoted to establishing a context for evaluating model performance against experimental data by careful consideration of uncertainties in measurements, initial conditions, and physical model assumptions. For example, ignition delay times in shock tubes are shown to be sensitive to potential impurity effects, which have been suggested to accelerate early radical pool growth in shock tube speciation studies. In addition, speciation predictions in burner‐stabilized flames are found to be more sensitive to uncertainties in experimental boundary conditions than to uncertainties in kinetics and transport. Predictions using the present model adequately reproduce previous validation targets and show substantially improved agreement against recent high‐pressure flame speed and shock tube speciation measurements. Comparisons of predictions of several other kinetic models with the experimental data for nearly the entire validation set used here are also provided in the Supporting Information. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 44: 444–474, 2012  相似文献   

11.
Predissociation spectra of the H5O2+.Ar(1,2) cluster ions are reported in the 1000-1900 cm(-1) region. The weakly bound argon atoms enable investigation of the complex in a linear action mode, and the resulting spectra are much simpler than those reported previously in this region [Asmis et al., Science 299, 1375 (2003) and Fridgen et al., J. Phys. Chem. A 108, 9008 (2004)], which were obtained using infrared multiphoton dissociation of the bare complex. The observed spectrum consists of two relatively narrow bands at 1080 and 1770 cm(-1) that are likely due to excitation of the shared proton and intramolecular bending vibrations of the two water molecules, respectively. The narrow linewidths and relatively small (60 cm(-1)) perturbation introduced by the addition of a second argon atom indicate that the basic "zundel" character of the H5O2+ ion survives upon complexation.  相似文献   

12.
We report a combined photoelectron and vibrational spectroscopy study of the (H(2)O)(7)(-) cluster anions in order to correlate structural changes with the observed differences in electron binding energies of the various isomers. Photoelectron spectra of the (H(2)O)(7)(-) . Ar(m) clusters are obtained over the range of m=0-10. These spectra reveal the formation of a new isomer (I') for m>5, the electron binding energy of which is about 0.15 eV higher than that of the type I form previously reported to be the highest binding energy species [Coe et al., J. Chem. Phys. 92, 3980 (1990)]. Isomer-selective vibrational predissociation spectra are obtained using both the Ar dependence of the isomer distribution and photochemical depopulation of the more weakly (electron) binding isomers. The likely structures of the isomers at play are identified with the aid of electronic structure calculations, and the electron binding energies, as well as harmonic vibrational spectra, are calculated for 28 low-lying forms for comparison with the experimental results. The HOH bending spectrum of the low binding type II form is dominated by a band that is moderately redshifted relative to the bending origin of the bare water molecule. Calculations trace this feature primarily to the bending vibration localized on a water molecule in which a dangling H atom points toward the electron cloud. Both higher binding forms (I and I') display the characteristic patterns in the bending and OH stretching regions signaling electron attachment primarily to a water molecule in an AA binding site, a persistent motif found in non-isomer-selective spectra of the clusters up to (H(2)O)(50)(-).  相似文献   

13.
A theoretical study on the structures and vibrational spectra of M+(H2O)Ar0‐1 (M = Cu, Ag, Au) complexes was performed using ab initio method. Geometrical structures, binding energies (BEs), OH stretching vibrational frequencies, and infrared (IR) absorption intensities are investigated in detail for various isomers with Ar atom bound to different binding sites of M+(H2O). CCSD(T) calculations predict that BEs are 14.5, 7.5, and 14.4 kcal/mol for Ar atom bound to the noble metal ion in M+(H2O)Ar (M = Cu, Ag, Au) complexes, respectively, and the corresponding values have been computed to be 1.5, 1.3, and 2.1 kcal/mol when Ar atom attaches to a H atom of water molecule. The former structure is predicted to be more stable than the latter structure. Moreover, when compared with the M+(H2O) species, tagging Ar atom to metal cation yields a minor perturbation on the IR spectra, whereas binding Ar atom to an OH site leads to a large redshift in OH stretching vibrations. The relationships between isomers and vibrational spectra are discussed. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

14.
The electronic structure aspects of the M (1S,3P) + N2O(X 1sigma+) (M = Be, Mg, Ca) reactions are investigated using the CASSCF/MRMP2 (complete active space SCF and the multireference M?ller-Plesset perturbation theory of the second order) computational methodology. The lowest adiabatic 1 1A' and 1 3A' potential energy surfaces (PESs) favor the bending dissociation mechanism of N2O in all studied cases. The rate-limiting channels are determined by the classical barriers that decrease in the series Be (8.9) > Mg (7.0) > Ca (1.2) kcal/mol, whereas the spin-forbidden reaction channels are found to be less important. A comparison with elaborated kinetic results (Plane et al. J. Phys. Chem. 1990, 94, 5255; Gas-Phase Metal Reactions; Elsevier: Amsterdam, 1992; Vinckier et al. J. Phys. Chem. A 1999, 103, 5328) on the Ca (1S) + N2O(X 1sigma+) reaction is presented, and the differences in the kinetic behavior of the title reactions are discussed. Our results also indicate that the techniques based on the multiconfigurational wave functions are unavoidable if a correct topology of the PESs governing these reactions is needed.  相似文献   

15.
Complexes of the benzenium ion (C(6)H(7)(+)) with N(2) or CO(2) have been studied by explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level [T. B. Adler et al., J. Chem. Phys. 127, 221106 (2007)] and the double-hybrid density functional B2PLYP-D [T. Schwabe and S. Grimme, Phys. Chem. Chem. Phys. 9, 3397 (2007)]. Improved harmonic vibrational wavenumbers for C(6)H(7)(+) have been obtained by CCSD(T?)-F12a calculations with the VTZ-F12 basis set. Combining them with previous B2PLYP-D anharmonic contributions we arrive at anharmonic wavenumbers which are in excellent agreement with recent experimental data from p-H(2) matrix isolation IR spectroscopy [M. Bahou et al., J. Chem. Phys. 136, 154304 (2012)]. The energetically most favourable conformer of C(6)H(7)(+)·N(2) shows a π-bonded structure similar to C(6)H(7)(+)·Rg (Rg = Ne, Ar) [P. Botschwina and R. Oswald, J. Phys. Chem. A 115, 13664 (2011)] with D(e) ≈ 870 cm(-1). For C(6)H(7)(+)·CO(2), a slightly lower energy is calculated for a conformer with the CO(2) ligand lying in the ring-plane of the C(6)H(7)(+) moiety (D(e) ≈ 1508 cm(-1)). It may be discriminated from other conformers through a strong band predicted at 1218 cm(-1), red-shifted by 21 cm(-1) from the corresponding band of free C(6)H(7)(+).  相似文献   

16.
(H2O)(6) (-) appears as a "magic" number water cluster in (H2O)(n) (-) mass spectra. The structure of the (H2O)(6) (-) isomer dominating the experimental population has been established only recently [N. I. Hammer et al., J. Phys. Chem. A 109, 7896 (2005)], and the most noteworthy characteristic of this isomer is the localization of the excess electron in the vicinity of a double-acceptor monomer. In the present work, we use a quantum Drude model to characterize the low-energy isomers and the finite temperature properties of (H2O)(6) (-). Comparison with ab initio calculations shows that the use of a water model employing distributed polarizabilities and distributed repulsive sites is necessary to correctly reproduce the energy ordering of the low-lying isomers. Both the simulations and the ab initio calculations predict that there are several isomers of (H2O)(6) (-) significantly lower in energy than the experimentally observed species, suggesting that the experimental distribution is far from equilibrium.  相似文献   

17.
18.
Organometallic actinide bis(ketimide) complexes (C5Me5)2An[-N=C(Ph)(R)]2 (where R = Ph, Me, and CH2Ph) of thorium(IV) and uranium(IV) have recently been synthesized that exhibit chemical, structural, and spectroscopic (UV-Visible, resonance-enhanced Raman) evidence for unusual actinide-ligand bonding. [Da Re et al., J. Am. Chem. Soc., 2005, 127, 682; Jantunen et al., Organometallics, 2004, 23, 4682; Morris et al., Organometallics, 2004, 23, 5142.] Similar evidence has been observed for the group 4 analogue (C5H5)2Zr[-N=CPh2]2. [Da Re et al., J. Am. Chem. Soc., 2005, 127, 682.] These compounds have important implications for the development of new heavy-element systems that possess novel electronic and magnetic properties. Here, we have investigated M-ketimido bonding (M = Th, U, Zr), as well as the spectroscopic properties of the highly colored bis-ketimido complexes, using density functional theory (DFT). Photoelectron spectroscopy (PES) has been used to experimentally elucidate the ground-state electronic structure of the thorium and uranium systems. Careful examination of the ground-state electronic structure, as well as a detailed modeling of the photoelectron spectra, reveals similar bonding interactions between the thorium and uranium compounds. Using time-dependent DFT (TDDFT), we have assigned the bands in the previously reported UV-Visible spectra for (C5Me5)2Th[-N=CPh2]2, (C5Me5)2U[-N=CPh2]2, and (C5H5)2Zr[-N=CPh2]2. The low-energy transitions are attributed to ligand-localized N p --> C=N pi excitations. These excited states may be either localized on a single ketimido unit or may be of the ligand-ligand charge-transfer type. Higher-energy transitions are cyclopentadienyl pi --> CN pi or cyclopentadienyl pi --> phenyl pi in character. The lowest-energy excitation in the (C5Me5)2U[-N=Ph2]2 compound is attributed to f-f and metal-ligand charge-transfer transitions that are not available in the thorium and zirconium analogues. Geometry optimization and vibrational analysis of the lowest-energy triplet state of the zirconium and thorium compounds also aids in the assignment and understanding of the resonance-enhanced Raman data that has recently been reported. [Da Re et al., J. Am. Chem. Soc., 2005, 127, 682.].  相似文献   

19.
Sliced velocity-map imaging has been used to measure photofragment scattering distributions for the O((3)P(2)) and O((3)P(1)) products of O(2) photolysis following laser excitation into the Herzberg continuum between 205 and 241 nm. The images were analysed to extract the photofragment spatial anisotropy parameter, β, together with the alignment parameters a(∥), a(⊥), a(⊥), and Re[a(∥, ⊥)]. Our alignment measurements bridge the gap between the recent 193 nm measurement of Brouard et al., Phys. Chem. Chem. Phys., 2006, 8, 5549 and those of Alexander et al., J. Chem. Phys., 2003, 118, 10566 at 222 and 237 nm, and extend out to the threshold at 241 nm. Our measured parameters show no strong dependence on photolysis wavelength. Near the threshold we were able to separate the contributions from the O((3)P(2)) + O((3)P(2)) and O((3)P(2)) + O((3)P(1)) channels, and found significantly different photofragment alignments for the two cases.  相似文献   

20.
Zhou M  Song Y  Gong T  Tong H  Guo J  Weng L  Liu D 《Inorganic chemistry》2008,47(15):6692-6700
Addition reaction of ArN(SiMe 3)M (Ar = Ph or 2,6 - (i) Pr 2-C 6H 3 (Dipp); M = Li or Na) to 2 equivalents of alpha-hydrogen-free nitrile RCN (R = dimethylamido) gave the dimeric [M{N(Ar)C(NMe 2)NC(NMe 2)N(SiMe 3)}] 2 ( 1a, Ar = Ph, M = Li; 1b, Ar = Ph, M = Na; 1c, Ar = Dipp, M = Li). 1d was obtained by hydrolysis of 1c at ambient temperature. Treatment of a double ratio of 1a or 1b with anhydrous MCl 2 (M = Mn, Fe, Co) yielded the 1,3,5-triazapentadienato complexes [M{N(Ph)C(NMe 2)NC(NMe 2)N(SiMe 3)} 2] (M = Mn, 2; Fe, 3; Co, 4) and with NiCl 2.6H 2O gave [M{N(Ph)C(NMe 2)NC(NMe 2)N(H)} 2] (M = Ni, 5). Treatment of an equiv of 1c with anhydrous CuCl in situ and in air led to complexes [{N(Dipp)C(NMe 2)NC(NMe 2)N(SiMe 3)}CuPPh 3] 6 and [Cu{N(Dipp)C(NMe 2)NC(NMe 2)N(H)} 2] 7, respectively. 1c, 1d, and 2- 7 were characterized by X-ray crystallography and microanalysis. 1c, 1d, 5, and 6 were well characterized by (1)H, (13)C NMR, 1c by (7)Li, and 6 by (31)P NMR as well. The structural features of these complexes were described in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号