首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is presented for matrix separation, preconcentration and determination by hydride generation atomic fluorescence spectrometry of trace amounts of Se(IV). It is based on solidified floating drops of 1-undecanol that are capable of extracting the target analyte after chelation with a water soluble ligand and subsequent ultrasound-assisted back-extraction into a aqueous solution. Hydride generation was then accomplished by reaction with a solution of sodium borohydride. Under optimized conditions, an enrichment factor of 15 and a linear calibration plot in the range from 0.01 to 5.0 μg L?1 were achieved using a 10.0 mL sample. The detection limit (3σ) is 7.0 ng L?1, and the relative standard deviation (RSD) is 2.1% at 1.0 μg L?1 (n?=?11). The method was applied to determination of Se(IV) in different real water samples through recovery experiments and subsequently validated against two certified reference materials.
A solidified floating organic drop microextraction coupled with hydride generation atomic fluorescence spectrometry for the determination of Se(IV) is described.  相似文献   

2.
We have developed a modified method for the extraction and preconcentration of benzene, toluene, ethylbenzene and xylenes (BTEX) in aqueous samples. It based on dispersive liquid-liquid microextraction along with solidification of floating organic microdrops. The dispersion of microvolumes of an extracting solvent into the aqueous occurs without dispersive solvent. Various parameters have been optimized. BTEX were quantified via GC with FID detection. Under optimized conditions, the preconcentration factors range from 301 to 514, extraction efficiencies from 60 to 103 %, repeatabilities from 2.2 to 4.1 %, and intermediate precisions from 3.5 to 7.0 %. The relative recovery for each analyte in water samples at three spiking levels is >85.6 %, with a relative standard deviation of <7.4 %.
Figure
A modified method based on dispersive liquid-liquid microextraction to preconcentrate benzene, toluene, ethylbenzene and xylenes was investigated. The method was rapid, precise, efficient, and sensitive. Experimental parameters affecting the extraction process were evaluated. The optimized procedure was validated according to the ICH guidance.  相似文献   

3.
Perfluorinated carboxylic acids (PFCAs) represent an important group of persistent perfluorinated organic compounds commonly determined in environmental and biological samples. A reversed-phase HPLC method was developed based on derivatization of the PFCAs with the commercially available fluorescent reagent 3-bromoacetyl coumarin. The method was optimized and this resulted in the efficient separation of PFCAs containing from 3 to 12 carbon atoms in molecule in 25 min run. To improve sensitivity, the preconcentration step has been optimized using Oasis-WAX and C18 sorbents for SPE. A 100-fold preconcentration is achieved by solid-phase extraction with the sorbent C18 Sep-PAK to result in limits of detection in the range from 43 to 75 ppt for the analytes examined, and in the application of the method of water analysis.
Figure
Chromatogram of mixture of perfluorinated carboxylic acids C3-PFCA – C12-PFCA with fluorescence detection after derivatization with 3-bromoacetyl coumarin (b), and blank (a)  相似文献   

4.
We have investigated the use of a Gaussian beam laser for MALDI Imaging Mass Spectrometry to provide a precisely defined laser spot of 5 μm diameter on target using a commercial MALDI TOF instrument originally designed to produce a 20 μm diameter laser beam spot at its smallest setting. A Gaussian beam laser was installed in the instrument in combination with an aspheric focusing lens. This ion source produced sharp ion images at 5 μm spatial resolution with signals of high intensity as shown for images from thin tissue sections of mouse brain.
Figure
?  相似文献   

5.
A method based on ultrasound-assisted emulsification–microextraction (USAEME) was proposed in this contribution for the determination of ethyl carbamate (EC) in alcoholic beverages using gas chromatography coupled to triple quadrupole mass spectrometry. To achieve the determination of EC in alcoholic beverages, the influences on the extraction efficiency of type and volume of extraction solvent, temperature, ionic strength, alcohol content, and extraction time were studied, once the extraction solvent had been selected. The optimized conditions were 200.0 μL of chloroform at 30 °C during 5 min with 15 % (m/v) sodium chloride addition. The detection limit, relative standard deviations, linear range, and recoveries under the optimized conditions were 0.03 μg L?1, 4.2–6.1 %, 0.1–50.0 μg L?1, and 80.5–87.9 %, respectively. Moreover, the feasibility of the present method was also validated by real samples. To the best of our knowledge, this is the first time that USAEME has been applied to determine a strongly hydrophilic compound in alcoholic beverages.
Figure
Schematic diagram of EC preconcentration from alcoholic beverages by USAEME. (a) Sample solution containing EC and 15 % (m/v) NaCl, (b) addition of 200 μL of extraction solvent (chloroform) into sample solution, (c) manual shaking 10 s for premix, (d) horizontal sonication emulsification at 30 °C during 5 min, (e) phase separation after centrifugation, and (f) enlarged view of resulting organic phase  相似文献   

6.
We report on a sensitive, reliable and relatively fast method for separation, preconcentration and determination of trace quantities of copper(II) ion. It is making use of nanometer-sized γ-alumina nanoparticles modified with sodium dodecyl sulfate (SDS). The adsorptive potential was assessed via a Langmuir isotherm and the maximal sorption capacity was found to be 138 mg g-1. The effects of pH values, amount of ligand, flow rate, type of eluting agent, volume of eluent, and the volume of sample were examined. The effects of interfering ions on the recovery of the analyte were also investigated. Copper ion was then determined by flame atomic absorption spectrometry. The relative standard deviation for five replicate determinations (at 50 μg L?1 of copper) is 3.3%. The detection limit (at 3 s) is 2.5 μg L?1. This method was validated with a certified reference material of oyster tissue (NIST SRM 1566b) and the results coincided well with the certified values. The procedure was successfully applied to the determination of Cu in water and food samples.
Figure
Alumina nanoparticles modified with SDS have been used as sorbent for separation and preconcentration of copper after complexation with APDC.  相似文献   

7.
We report on an efficient one-step sample preconcentration technique by coupling microwave heating and cloud vapor zone (CVZ)-based headspace controlled-temperature single drop microextraction (HS-CT-SDME), and its application to headspace extraction of chlorophenols in aqueous solutions. Microwave irradiation is utilized to accelerate evaporation of analytes into the headspace sampling zone for the direct extraction of aqueous chlorophenols. A microdrop of extractant is suspended at the bottom of a bell-mouthed micropipette tip connected to a microsyringe needle. An external cooling system was adopted to control the formation of the CVZ around the SDME tip in the headspace sampling area. In the CVZ procedure, the warm headspace vapor is quickly cooled near the SDME tip, thus forming a dense cloud of analyte-water vapor; thereby enhancing the partition of the analytes into the SDME solvent. The chlorophenols are then determined by LC-UV detection. Under the optimized experimental conditions, the analytical signal is linearly related to the concentration of the chlorophenols range of 2.5–250?ng?mL?1. The detection limits vary from 0.3 to 0.7?ng?mL?1, and the precision (expressed as the relative standard deviation) from 3.7 to 13.3?%. The method was validated with real water samples, and the spiked recovery ranged between 92 and 103.1?% for river water, and between 85.1?% and 98.6?% for lake water. Compared to other methods, microwave assisted HS-CT-SDME is simple, rapid, sensitive, inexpensive and eco-friendly, and requires less sample and organic extractant.
Online Graphical Abstract
Assembly of microwave assisted headspace controlled-temperature single drop microextraction set-up. We developed a one-step microwave assisted headspace controlled-temperature single drop microextraction technique for the analysis of chlorophenols from waters using HPLC-UV. The presented approach is a rapid, simple, solvent miniaturized, inexpensive and eco-friendly method which represent an alternative to traditional sample preparation methods to determine chlorophenols from environmental water samples.  相似文献   

8.
We describe the application of temperature-controlled ionic liquid based microextraction (TC-IL-ME) of lead(II) ion. The method does not require the use of an organic solvent or a ligand. Rather, the IL is directly added to the aqueous sample containing Pb(II) in a centrifuge tube, and the mixture is heated to 80 °C for 4 min. After cooling at 0 °C, the solution turns cludy due to the formation of fine droplets of the IL containing Pb(II). The IL is separated by centrifugation, acidified, and directly submitted to FAAS by microinjection. The effects of pH value, volume of IL, extraction time, temperature, sample volume and matrix were optimized to result in a preconcentration factor of 30, a detection limit of 5.8 μg L?1, and a limit of quantification of 19.3 μg L?1. The method was validated by analyzing a certified reference material (NCSZC81002B; hair). A recovery test performed with spiked samples gave values between 102 % and 105 %. The method was also used to determine Pb(II) in hair samples.
Figure
We describe the application of temperature-controlled ionic liquid based microextraction (TC-IL-ME) of lead(II) ion. The effects of pH value, volume of IL, extraction time, temperature, sample volume and matrix were optimized.  相似文献   

9.
We report on the application of emulsification-based dispersive liquid microextraction (EB-DLME) to the preconcentration of Cd(II). This procedure not only possesses all the advantages of routine DLLME, but also results in a more stable cloudy state which is particularly useful when coupling it to FAAS. In EB-DLME, appropriate amounts of the extraction solvent (a solution of dithizone in chloroform) and an aqueous solution of sodium dodecyl sulfate (SDS; acting as a disperser) are injected into the samples. A stable cloudy microemulsion is formed and Cd(II) ion is extracted by chelation. After phase separation, the sedimented phase is subjected to FAAS. Under optimized conditions, the calibration curve for Cd(II) is linear in the range from 0.1 to 25 μg L?1, the limit of detection (at S/N?=?3) is 30 pg L?1, the relative standard deviations for seven replicate analyses (at 0.56 μg L?1 of Cd(II)) is 4.6 %, and the enrichment factor is 151. EB-DLME in our opinion is a simple, efficient and rapid method for the preconcentration of Cd(II) (and most likely of many other ions) prior to FAAS determination.
Figure
Emulsification based dispersive liquid microextraction is presented for determination of cadmium in water samples  相似文献   

10.
This work presents a sensitive method for the determination of formaldehyde. It is based on the use of modified alumina nanoparticles for its preconcentration, this followed by a new and simple catalytic kinetic method for its determination. Alumina nanoparticles were chemically modified by immobilization of 2,4-dinitrophenylhydrazine via sodium dodecyl sulfate as a surfactant. The formaldehyde retained on the modified adsorbent was then desorbed and determined via its catalytic effect on the oxidation of thionine by bromate ion. Factors affecting the preconcentration and determination of formaldehyde have been investigated. Formaldehyde can be detected in the range from 0.05 to 38.75 μg L?1, and no serious interferences have been observed. The method has been successfully applied to the quantitation of formaldehyde in water, food, and certain biological samples.
Figure
Schematic representation of the grafting 2,4-dinitrophenylhydrazine on the SDS coated alumina nanoparticles for the preconcentration and determination of formaldehyde based on its catalytic effect on oxidation reaction of thionine by bromated ions. This method can be used to the determination of formaldehyde in different real samples.  相似文献   

11.
Microextraction by packed sorbents (MEPS) combined with Surface-enhanced Raman spectroscopy (SERS) was investigated, and applied to the determination of musk ketone (MK) in river water samples. The full MEPS–SERS method includes analyte enrichment by MEPS preconcentration with C18 sorbent followed by SERS detection supported by silver nanoparticles. An eluent drop containing the analyte is deposited directly from the MEPS syringe on a CaF2 glass plate. When the drop has dried, a specific volume of silver nanoparticles solution is added on it before each SERS measurement. Several experimental variables were studied in depth; under the optimum experimental conditions MK can be extracted from a 500 μL sample with recoveries in the range 47–63 %. The limit of detection was 0.02 mg L?1 and the relative standard deviation 15.2 % (n?=?4). Although not investigated in this work, the proposed method might be suitable for in-situ monitoring, because of the portability of the Raman spectrometer used.
Figure
Experimental scheme of the MEPS-SERS method proposed for the determination of musk ketone in river water  相似文献   

12.
A dual cloud point extraction (dCPE) off-line enrichment procedure coupled with a hydrodynamic–electrokinetic two-step injection online enrichment technique was successfully developed for simultaneous preconcentration of trace phenolic estrogens (hexestrol, dienestrol, and diethylstilbestrol) in water samples followed by micellar electrokinetic chromatography (MEKC) analysis. Several parameters affecting the extraction and online injection conditions were optimized. Under optimal dCPE–two-step injection–MEKC conditions, detection limits of 7.9–8.9 ng/mL and good linearity in the range from 0.05 to 5 μg/mL with correlation coefficients R 2?≥?0.9990 were achieved. Satisfactory recoveries ranging from 83 to 108 % were obtained with lake and tap water spiked at 0.1 and 0.5 μg/mL, respectively, with relative standard deviations (n?=?6) of 1.3–3.1 %. This method was demonstrated to be convenient, rapid, cost-effective, and environmentally benign, and could be used as an alternative to existing methods for analyzing trace residues of phenolic estrogens in water samples.
Figure
A dual cloud point extraction (dCPE) off-line enrichment procedure coupled with a hydrodynamic–electrokinetic two-step injection online enrichment technique was successfully developed for simultaneous preconcentration of trace phenolic estrogens in water samples followed by MEKC analysis.  相似文献   

13.
We have prepared an ~1.4 μm thin hybrid film from polyurethane (PU) hydrogel and tetraethylorthosilicate (TEOS) by a sol–gel method, and have incorporated the red-luminescent ruthenium-tris-bipyridyl complex. At an optimized ratio of PU/TEOS (1.5:1; w/w) and annealing temperature (60 °C), the membrane sensor exhibits good capability to extract water from organic solvents but also can well retain the ruthenium dye. If contacted with water-containing organic solvents such as acetone or THF, both the luminescence intensity and wavelength change significantly. The response of luminescence intensity to the water fraction in organics is sigmoidal, which can be well fitted with a modified Stern-Volmer equation. The sensor works in the ranges of 0–6 % and 0–12 % (v/v) of water in acetone and THF, respectively, with detection limits of 0.13 % and 0.486 % (v/v).
Figure
A ultrathin Ru(bpy)3 2+-doped hybrid film (~1.4 μm) prepared from PU hydrogel and TEOS shows water-dependent luminescence in both intensity and emission energy when calibrated in organic solvents.  相似文献   

14.
Ionic liquids (ILs) are novel solvents that display a number of unique properties, such as negligible vapor pressure, thermal stability (even at high temperatures), favorable viscosity, and miscibility with water and organic solvents. These properties make them attractive alternatives to environmentally unfriendly solvents that produce volatile organic compounds. In this article, a critical review of state-of-the-art developments in the use of ILs for the separation and preconcentration of bioanalytes in biological samples is presented. Special attention is paid to the determination of various organic and inorganic analytes—including contaminants (e.g., pesticides, nicotine, opioids, gold, arsenic, lead, etc.) and functional biomolecules (e.g., testosterone, vitamin B12, hemoglobin)—in urine, blood, saliva, hair, and nail samples. A brief introduction to modern microextraction techniques based on ILs, such as dispersive liquid–liquid microextraction (DLLME) and single-drop microextraction (SDME), is provided. A comparison of IL-based methods in terms of their limits of detection and environmental compatibilities is also made. Finally, critical issues and challenges that have arisen from the use of ILs in separation and preconcentration techniques are also discussed.
Figure
The roles and applications of ionic liquids in biological analysis  相似文献   

15.
Macroporous reversed-phase (mRP) chromatography was successfully used to develop an accurate and precise method for total protein in serum. The limits of detection (0.83 μg, LOD) and quantification (2.51 μg, LOQ) for the mRP method are comparable with those of the widely used micro BCA protein assay. The mRP method can be used to determine the total protein concentration across a wide dynamic range by detecting chromatographic peaks at 215 nm and 280 nm. The method has the added advantage of desalting and denaturing proteins, leading to more complete digestion by trypsin and to better LC–MS–MS identification in shotgun proteomics experiments.
Figure
Simultaneous Serum Desalting and Total Protein Determination with Macroporous Reversed-Phase Chromatography: calibration plots  相似文献   

16.
We describe a simple, effective, inexpensive and rapid method for the determination of trace amounts of total inorganic arsenic in water samples by means of a modified solid phase preconcentration procedure using an aluminium hydroxide gel sorbent and hydride generation atomic fluorescence spectrometry (HGAFS). This method avoids the traditional extraction procedures that are time- and solvent-consuming. The effects of quantity of adsorbent, solution pH, adsorption time and potentially interfering ions were studied. Under the optimal conditions, the detection limit is 3 ng?L?1, and the enrichment factor is 167. The calibration plot is linear in the range from 0.05 to 10 μg?L?1, with a correlation coefficient of 0.9992. The relative standard deviation (RSD) was less than 6.1 % (n?=?5) and recoveries in spiked environmental water were >100 %. The method was successfully applied to the determination of total inorganic arsenic in natural water samples.
Figure
The above figure showed effect of adsorption time on recoveries of total inorganic arsenic. The adsorption rate of total inorganic arsenic on is very fast and it takes only several minutes to reach adsorption balance. After reaching adsorption balance, recoveries of total inorganic arsenic is up to 95 %.  相似文献   

17.
We describe a simple method for the simultaneous determination of organolead and organomanganese compounds in seawater samples. It is based on ultrasound-assisted emulsification microextraction. Trimethyllead, triethyllead, tetraethyllead, cyclopentadienylmanganese tricarbonyl and its methyl derivative were separated and determined using gas chromatography and mass spectrometry. Trimethyllead and triethyllead were derivatized with sodium tetraphenylborate before being submitted to the preconcentration step. Detection limits ranged from 7.0 to 41 ng L?1 depending on the compound. Recoveries ranged from 84 to 118 %, depending on the compound and the sample analyzed. Seawater samples were collected at different sites of the Cartagena Bay and none of the target analytes were found at levels above the corresponding detection limits.
Figure
The most relevant organomanganese and organolead compounds can be monitorized in seawaters by using a relatively simple instrumentation (Gas chromatography–mass spectrometry). Advantage is taken of ultrasound-assisted emulsification microextraction that involves minimal amounts of organic solvents  相似文献   

18.
Measurement of neuropeptides in the brain through in vivo microdialysis sampling provides direct correlation between neuropeptide concentration and brain function. Capillary liquid chromatography-multistage mass spectrometry (CLC-MSn) has proven to be effective at measuring endogenous neuropeptides in microdialysis samples. In the method, microliter samples are concentrated onto nanoliter volume packed beds before ionization and mass spectrometry analysis. The long times required for extensive preconcentration present a barrier to routine use because of the many samples that must be analyzed and instability of neuropeptides. In this study, we evaluated the capacity of 75 μm inner diameter (i.d.) capillary column packed with 10 μm reversed phase particles for increasing the throughput in CLC-MSn based neuropeptide measurement. Coupling a high injection flow rate for fast sample loading/desalting with a low elution flow rate to maintain detection sensitivity, this column has reduced analysis time from ~30 min to 3.8 min for 5 μL sample, with 3 pM limit of detection (LOD) for enkephalins and 10 pM LOD for dynorphin A1-8 in 5 μL sample. The use of isotope-labeled internal standard lowered peptide signal variation to less than 5 %. This method was validated for in vivo detection of Leu and Met enkephalin with microdialysate collected from rat globus pallidus. The improvement in speed and stability makes CLC-MSn measurement of neuropeptides in vivo more practical.
Figure
?  相似文献   

19.
We have extracted ten phthalate esters (C1 to C8) using six different micro-scale methods for extraction, and then separated them by capillary liquid chromatography coupled to UV detection. The methods included liquid-liquid extraction, ultrasonic-assisted extraction, microwave-assisted extraction, dispersive liquid-liquidmicroextraction, dispersive liquid-liquid microextraction solidification of floating organic droplets, and cloud point extraction. The linear range of the analytes is from 0.5 to 50 μg mL?1, and the detection limits range from 0.02 to ~0.17 μg mL?1. The precision and accuracy of all intra- and inter-day analyses are <5.5%. We find that dispersive liquid-liquid microextraction solidification of floating organic droplet (DLLME-SFO) is the best method for quantification of most phthalate esters in water samples and cosmetics because of its low limit of detection and high extraction efficiencies.
Figure
Phthalate esters were extracted by six micro-scale extraction methods and then determinated by capillary liquid chromatography coupled with ultraviolet detector (CapLC-UV).  相似文献   

20.
We have prepared molecularly imprinted beads with molecular recognition capability for target molecules containing the penicillanic acid substructure. They were prepared by (a) grafting mesoporous silica beads with 6-aminopenicillanic acid as the mimic template, (b) filling the pores with a polymerized mixture of methacrylic acid and trimethylolpropane trimethacrylate, and (c) removing the silica support with ammonium fluoride. The resulting imprinted beads showed good molecular recognition capability for various penicillanic species, while antibiotics such as cephalosporins or chloramphenicol were poorly recognized. The imprinted beads were used to extract penicillin V, nafcillin, oxacillin, cloxacillin and dicloxacillin from skimmed and deproteinized milk in the concentration range of 5–100 μg·L?1. The extracts were then analyzed by micellar electrokinetic chromatography by applying reverse polarity staking as an in-capillary preconcentration step, and this resulted in a fast and affordable method within the MRL levels, characterized by minimal pretreatment steps and recoveries of 64–90 %.
Figure
Penicillanic acid-imprinted beads prepared in preformed porous silica by an imprinting & etching approach show selectivity towards β-lactams antibiotics. Molecularly imprinted solid phase extraction/micellar electrokinetic chromatography coupled with in-capillary preconcentration resulted in a fast and affordable method for penicillins in milk at MRL levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号