首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Shihabi ZK 《Electrophoresis》2000,21(14):2872-2878
Discontinuous buffers for capillary zone electrophoresis (CZE) can be used under less rigid conditions compared to those for isotachophoresis for stacking. They can be prepared simply by modifying the sample itself, either by addition of small inorganic ions, low conductivity diluents, or both, and also by adjusting its pH, meanwhile injecting a large volume on the capillary. Zwitterionic and organic-based buffers such as triethanolamine and tris(hydroxymethyl)aminomethane (Tris) are well suited for stacking due to their low conductivity, provided the buffer is discontinuous as demonstrated here. A simple mechanism based on discontinuous buffers is described to explain many of the observed stacking types in CZE, pointing out the many similarities to transient isotachophoresis.  相似文献   

2.
On-line preconcentration methods for capillary electrophoresis   总被引:3,自引:0,他引:3  
Osbourn DM  Weiss DJ  Lunte CE 《Electrophoresis》2000,21(14):2768-2779
The limits of detection (LOD) for capillary electrophoresis (CE) are constrained by the dimensions of the capillary. For example, the small volume of the capillary limits the total volume of sample that can be injected into the capillary. In addition, the reduced pathlength hinders common optical detection methods such as UV detection. Many different techniques have been developed to improve the LOD for CE. In general these techniques are designed to compress analyte bands within the capillary, thereby increasing the volume of sample that can be injected without loss of CE efficiency. This on-line sample preconcentration, generally referred to as stacking, is based on either the manipulation of differences in the electrophoretic mobility of analytes at the boundary of two buffers with differing resistivities or the partitioning of analytes into a stationary or pseudostationary phase. This article will discuss a number of different techniques, including field-amplified sample stacking, large-volume sample stacking, pH-mediated sample stacking, on-column isotachophoresis, chromatographic preconcentration, sample stacking for micellar electrokinetic chromatography, and sweeping.  相似文献   

3.
The behavior of charged species along concentration boundaries in capillary zone electrophoresis (CZE) that was first described in detail by Everaerts et al. in 1979 assured the possibility of concentrating charged solutes inside the capillary. The concentration effect is based on the sudden change in analyte electrophoretic velocity brought about by the difference in the magnitude of the electric field. Furthermore, this on-line method could be the needed solution to the problem of low concentration sensitivity in CZE. Sample stacking, which is now its well known name, has then found valuable use in applying CZE in many fields, especially after the in-depth studies performed in the early 90s by Chien and Burgi. This article reviews the theory and methodological developments of sample stacking developed for charged analytes in CZE and also in electrokinetic chromatography. A table conveying the reported applications especially in the biomedical and environmental fields is given. On top of this, other on-line concentration methods for charged species, namely, sample self-stacking, acetonitrile stacking, sweeping, cation selective exhaustive injection-sweeping, and use of a pH junction, are briefly discussed.  相似文献   

4.
Beckers JL 《Electrophoresis》2000,21(14):2788-2796
A sample stacking procedure to which a specific combination of electrolyte solutions is applied is isotachophoresis (ITP) superimposed on capillary zone electrophoresis (CZE), a so-called ITP/CZE system. In ITP/CZE some components migrate in an ITP fashion on top of a background electrolyte, and the other analytes migrate in a zone electrophoretic manner. For such a system, the leading electrolyte consists of a mixture of an ionic species, L1, of high mobility (the leading ion of the ITP system), an ionic species, L2, of low mobility (the coions of the CZE system), and a buffering counter-ionic species, whereas the terminating solution only contains the ionic species L2 and the buffering counterions. The zones of the components migrating in the ITP/CZE mode are sharp owing to the self-correcting properties of the zones and the concentrations of the L1 ions of the system. Mobility windows can be calculated, indicating which ions can migrate in the ITP/CZE mode. In this article mobility windows are calculated by applying both strong and weak acids as L1 and L2 ions and it appears that mobility windows can be optimized by chosing different ratios of L1 and L2 as well as different pH values. It is possible to construct very narrow mobility windows, and thereby choose which component of a sample solution can be concentrated, and to what concentration, in a very selective way. The big advantage of ITP/CZE compared with applications such as transient ITP and transient stacking is that the stacked sample ionic species migrate in the ITP mode during the whole experiment; furthermore, they do not destack. Experimentally obtained electropherograms validate the calculated mobility windows for the ITP/CZE mode.  相似文献   

5.
Low-impact ionization sources like electrospray ionization (ESI) and matrix-assisted, laser desorption/ionization (MALDI) equipped with time-of-flight (TOF) mass analyzers provide intact protein analysis over a very wide molar mass range. ESI/TOFMS provides also indications on the higher-order structure of intact proteins and non-covalent protein complexes. However, direct analysis of intact proteins mixtures in real samples shows limited success, mainly because spectra become very complex to interpret. This is also due to sample contaminants, and to the mechanism of competitive ionization in ESI or MALDI. Rapid and efficient sample clean-up and separation methods can significantly enhance the power of TOFMS for intact protein analysis. However, if protein native conditions want to be maintained, the methods should affect neither the three-dimensional structure nor the non-covalent chemistry of the proteins. Reversed-phase (RP) HPLC, size-exclusion chromatography (SEC), and capillary zone electrophoresis (CZE) are on-line or off-line coupled to ESI/TOFMS or MALDI/TOFMS. In fact, these separation methods often show limitations when applied to the analysis of native proteins. Organic modifiers and saline buffers are required in the case of RP HPLC or CZE. They can induce protein degradation or affect ionization when MS is performed after separation. High voltages used in CZE can contribute to alter proteins from their native form. In the case of high molar mass proteins, SEC is scarcely selective, and barely able to detect protein aggregates. Sample entanglement/adsorption on the stationary phase can also occur.  相似文献   

6.
During some capillary zone electrophoresis (CZE) experiments, the baseline UV absorbance signal at 200 nm “jumped” from one stable level prior to the water plug (marking the flow of neutrals) to another stable level after the water plug. The phenomenon was further examined with distilled water as the sample and with different buffers, applied potentials, and salt concentrations in the buffer. It seems that there is an “isotachophoretic effect” on top of the CZE separations when running under stacking conditions. The effect results in a higher pH value of the buffer after the water plug compared to the pH prior to the plug. The nature of the buffer, the salt concentration in the buffer, and the applied potential all affect this phenomenon.  相似文献   

7.
Shihabi ZK 《Electrophoresis》2002,23(15):2394-2398
The work presented here demonstrates that electroinjection can be performed using discontinuous buffers, which can result in better stacking than that obtained by hydrodynamic injection. The sample can be concentrated at the tip of the capillary leaving practically the whole capillary for sample separation. This results in several advantages, such as better sample concentration, higher plate number and shorter time of stacking. However, sample introduction by electromigration is suited for samples free or low in salt content. Samples, which are high in salt content, are better introduced by the hydrodynamic injection for stacking by the discontinuous buffers. Different simple methods to introduce the discontinuity in the buffer for electroinjection are discussed.  相似文献   

8.
Determination of residual pharmaceutical compounds in environmental water is gaining increasing interests. The task represents a substantial challenge to analysts because analytes present in quite complicated matrices and at very low concentrations. Despite the inherent low sensitivity associated with capillary electrophoresis (CE), it has been used successfully to determine different types of pharmaceutical compounds at very low levels that rival those reported by more commonly used methods for that purpose such as high performance liquid chromatography-mass spectrometry (HPLC-MS). Attempts to use CE for the determination of drugs in environmental water samples started nearly in the late 1990s; since then, different modes of CE including capillary zone electrophoresis (CZE) and micellar electrokinetic chromatography together with different detection techniques (UV, fluorescence, MS) have been investigated and shown to be of adequate performance. A key to the success of CE for such low-level determination was the sample concentration steps that have been used including solid-phase extraction and more advanced approaches such as in-line sample concentration, large volume sample stacking, and others. The different reports that have been reported for this application in particular have been reviewed since late 1990s with emphasis on the attained limits of detections and sample treatment. The particularities of the separation conditions in each case have been discussed with some elaboration.  相似文献   

9.
In general capillary zone electrophoresis (CZE) separation models, o‐, m‐, and p‐phenylenediamine isomers can be separated in a weak acidic running buffer for their pKa values being 4.52, 5.64, 6.04, respectively, while o‐, m‐, and p‐dihydroxybenzene isomers can be separated in a weak basic buffer for their pKa values being 9.40, 9.40 and 10.04, respectively. So, it is hard to find a suitable running buffer at a fixed pH in normal CZE for simultaneous separation of these two groups of positional isomers. In this paper, a novel method based on alternately running two different pH buffers in CZE coupled with amperometric detection (CZE‐AD) was designed to simultaneously determine these two groups of positional isomers. It is found that when two different pH running buffers were employed alternately under appropriate order and time, the six analytes could be separated perfectly in less than 20 min and the detection limits were as low as 10–7 mol/L. Furthermore, the effects of working electrode potential, pH and concentration of running buffer, separation voltage and injection time on CZE–AD were investigated. Experimental results demonstrated that the introduced method was practical to simultaneously determine two groups of positional isomers with different pKa and had some advantages of high sensitivity, good repeatability and small sample requirement.  相似文献   

10.
DetectionofCatecholicCompoundswithField-ampilfiedCZE-AmperometryHUShen,PANGDai-wen,HUYong-gang,CHENGJie-ke(DepartmentofChemis...  相似文献   

11.
Many water-miscible organic solvents, especially acetonitrile and acetone, bring along significant degrees (approximately 30 times) of stacking by electroinjection through high-field amplified injection for the basic compounds compared to that for aqueous buffers or water. The relative stacking of different compounds in acetonitrile or acetone is different compared to that for water. Stacking by electroinjection in organic solvents is less stringent and easier to accomplish in practice. Acids and salts, in aqueous solutions, can ruin the stacking for both organic and aqueous solvents; however, this effect can be better tolerated by diluting the sample in acetonitrile. Thus, this stacking is termed "organic solvent high-field amplified injection". This stacking by electroinjection is enhanced by increasing the electrophoresis buffer concentration and can be better than that by pressure injection. From the practical aspects, some cationic drugs present in serum such as amiodarone can be detected at the therapeutic levels by electroinjection on the capillary after protein precipitation by acetonitrile.  相似文献   

12.
Two in-line preconcentration capillary zone electrophoresis (CZE) methods (field amplified sample injection (FASI) and stacking with sample matrix removal (LVSS)) have been evaluated for the analysis of acrylamide (AA) in foodstuffs. To allow the determination of AA by CZE, it was derivatized using 2-mercaptobenzoic acid. For FASI, the optimum conditions were water at pH > or = 10 adjusted with NH3 as sample solvent, 35 s hydrodynamic injection (0.5 psi) of a water plug, 35 s of electrokinetic injection (-10 kV) of the sample, and 6s hydrodynamic injection (0.5 psi) of another water plug to prevent AA removal by EOF. In stacking with sample matrix removal, the reversal time was found to be around 3.3 min. A 40 mM phosphate buffer (pH 8.5) was used as carrier electrolyte for CZE separation in both cases. For both FASI and LVSS methods, linear calibration curves over the range studied (10-1000 microg L(-1) and 25-1000 microg L(-1), respectively), limit of detection (LOD) on standards (1 microg L(-1) for FASI and 7 microg L(-1) for LVSS), limit of detection on samples (3 ng g(-1) for FASI and 20 ng g(-1) for LVSS) and both run-to-run (up to 14% for concentration and 0.8% for time values) and day-to-day precisions (up to 16% and 5% for concentration and time values, respectively) were established. Due to the lower detection limits obtained with the FASI-CZE this method was applied to the analysis of AA in different foodstuffs such as biscuits, cereals, crisp bread, snacks and coffee, and the results were compared with those obtained by LC-MS/MS.  相似文献   

13.
Sun B  Macka M  Haddad PR 《Electrophoresis》2003,24(12-13):2045-2053
Stacking techniques used independently and also with a high-sensitivity cell (HSC) were employed to optimise sensitivity and detection limits in the direct photometric detection of the following eight arsenic species by capillary zone electrophoresis (CZE): arsenite, arsenate, monomethylarsonic acid (MMA), dimethylarsinic acid (DMA), 4-hydroxy-3-nitrophenylarsonic acid (Roxarsone), p-aminophenylarsonic acid (p-ASA), 4-nitrophenylarsonic acid (4-NPAA), and phenylarsonic acid (PAA) (target analytes). The stacking mechanisms, optimised stacking and separation conditions, and concentration sensitivity enhancement factors were discussed and compared for (i) normal stacking mode (NSM, sometimes also referred to as field-amplified stacking) in an uncoated fused-silica capillary in the counter-electroosmotic flow (EOF) mode, (ii) large-volume sample stacking (LVSS) with polarity switching, and (iii) the less often applied stacking method of co-EOF NSM stacking with EOF reversal using a poly(diallydimethylammonium chloride) (PDDAC)-coated capillary. The optimal injection volumes were 7.4, 60 and 17.2% of the total capillary volume, for the above three methods, respectively. LVSS with polarity switching gave the lowest limit of detection (LOD). The use of the HSC further reduced the LOD of each target analytes by a factor of 5-8 times. By combining LVSS and HSC, LODs of the target analytes could be reduced by a factor of 218-311, to 5.61, 9.15, 11.1, and 17.1 microg/L for As(III), DMA, MMA, and As(V), respectively. The method was demonstrated to be applicable to the determination of the target analytes in tap water and lake water, with recoveries in the range of 89.4-103.3%.  相似文献   

14.
To improve the sensitivity of the UV-detection for the determination of trace amounts of albumin by capillary zone electrophoresis (CZE), five on-line preconcentration techniques, including field-amplified sample stacking (FASS), head-column field-amplified sample stacking (HC-FASS), stacking with a polymer solution, dynamic pH junction and large volume sample stacking (LVSS) with reversed polarity, were compared. Sensitivity enhancement factor and reproducibility were two factors that were used to assess the suitability of each method. To minimize protein adsorption on the capillary wall, capillaries were covalently modified with anionic polymer, poly(sulfopropylmethacrylate) coating. All used methods have good reproducibility. The maximum sensitivity enhancement factor (about 67-fold in terms of peak heights) was achieved with LVSS technique. The concentration limit of detection (LOD) (S/N=3) for the human serum albumin obtained with the optimized LVSS approach was 15 microg/ml with UV-detection. The method was further evaluated for the analysis of urine samples with gel-filtration-based sample-desalting procedure.  相似文献   

15.
GENTRANS, a comprehensive one-dimensional dynamic simulator for electrophoretic separations and transport, was extended for handling electrokinetic chiral separations with a neutral ligand. The code can be employed to study the 1:1 interaction of monovalent weak and strong acids and bases with a single monovalent weak or strong acid or base additive, including a neutral cyclodextrin, under real experimental conditions. It is a tool to investigate the dynamics of chiral separations and to provide insight into the buffer systems used in chiral capillary zone electrophoresis (CZE) and chiral isotachophoresis. Analyte stacking across conductivity and buffer additive gradients, changes of additive concentration, buffer component concentration, pH, and conductivity across migrating sample zones and peaks, and the formation and migration of system peaks can thereby be investigated in a hitherto inaccessible way. For model systems with charged weak bases and neutral modified β-cyclodextrins at acidic pH, for which complexation constants, ionic mobilities, and mobilities of selector-analyte complexes have been determined by CZE, simulated and experimentally determined electropherograms and isotachopherograms are shown to be in good agreement. Simulation data reveal that CZE separations of cationic enantiomers performed in phosphate buffers at low pH occur behind a fast cationic migrating system peak that has a small impact on the buffer composition under which enantiomeric separation takes place.  相似文献   

16.
Micelle to solvent stacking (MSS) is a new on-line sample concentration technique for charged analytes in capillary zone electrophoresis (CZE). Sample concentration in MSS mainly relies on the reversal in the effective electrophoretic mobility of the analyte at the boundary zone between the sample solution (S) and CZE background solution (BGS) inside the capillary. The basic condition for MSS is that the S is prepared in a matrix that contains an additive (i.e., micelles) which interacts with and has an opposite charge compared to the analytes. In addition, the BGS must contain a sufficient percentage of organic solvent. MSS was first reported for organic cations using anionic dodecyl sulfate micelles as additive in the S and methanol or acetonitrile as organic solvent in the BGS. Here, theoretical and experimental studies on MSS are described for organic anions using cationic cetyltrimethyl ammonium micelles as additive in the S and methanol as organic solvent in the BGS. Up to an order of magnitude improvement in concentration sensitivity was obtained for the test hypolipidaemic drugs using MSS in CZE with UV detection. The optimized method was also evaluated to the analysis of a spiked wastewater sample that was subjected to a simple extraction step.  相似文献   

17.
This article discusses the main approaches to the manipulation of the separation selectivity of inorganic and low-molecular-mass anions in capillary zone electrophoresis (CZE). Physical or instrumental effects such as the detection mode, the sampling mode, the separation voltage, and the temperature are easy to control but their influence on selectivity is generally minimal, except for the use of selective detection. Selectivity effects arising from chemical parameters (i.e. effective size and charge, and structure of analyte; the pH, surfactant type and content, polyelectrolyte content, organic solvent content of the electrolyte; capillary treatment; and complexing agents) are much more significant than those resulting from physical effects. The effects on separation selectivity exerted by some of the above parameters can be complex, so that manipulation of selectivity in CZE of anionic solutes is often difficult. Nonetheless, many practical applications can be performed through the judicious control of parameters noted in this review. Some practical limitations to selectivity manipulation are highlighted and possible areas that can be studied in the future for selectivity control are noted.  相似文献   

18.
黄颖  段建平  张建华  陈国南 《色谱》2007,25(3):326-331
建立了毛细管区带电泳(CZE)在线富集3种肌肽类活性肽(肌肽、鹅肌肽和高肌肽)的两种简便有效的方法。一种是大体积进样反向压力排除基体富集(LVSRP)技术,即通过流体动力学进样,在不改变电源极性的条件下,利用反向压力排除样品基体,电堆积富集后进行CZE分离;另一种是大体积进样电渗流排除基体富集(LVSEP)技术,即通过流体动力学进样,于运行缓冲液中加入溴化十六烷基三甲基铵(CTAB)动态修饰毛细管表面,通过电渗流排除样品基体,改变电源极性后进行CZE分离。与常规CZE相比,LVSRP技术和LVSEP技术使检测灵敏度提高了40~60倍。对影响两种富集过程的一些因素进行了研究,在最优富集条件下考察本方法的线性范围为0.080~5.0 μmol/L。对3种生物活性肽的检测限(S/N=3)分别为LVSRP 41~58 nmol/L,LVSEP 35~43 nmol/L。  相似文献   

19.
Ethyl glucuronide (EtG), a metabolite of ethanol, is a marker of recent alcohol consumption. In the past few years, its analysis in body fluids has attracted considerable attention because it closes a gap between short time and long time alcohol markers such as ethanol and carbohydrate-deficient transferrin, respectively. The capillary zone electrophoresis (CZE) analysis of EtG in model mixtures and human serum is reported using uncoated and coated fused-silica capillaries together with acidic buffers in the pH range between 3.2 and 4.4 and indirect detection. In these approaches, separation of EtG from endogenous macro- and microcomponents (anionic serum components of high and low concentration, respectively) is based upon transient isotachophoretic stacking referred to as sample self-stacking. The selection of a favorable bufferco-ion and pH is shown to be crucial for optimized sensitivity. Abuffercomposed of 10 mM nicotinic acid and epsilon-aminocaproic acid (pH 4.3) is demonstrated to provide a detection limit for EtG in serum of 0.1 microg/ml, a value that is relevant for clinical and forensic purposes.  相似文献   

20.
The applicability of capillary zone electrophoresis (CZE) to ions having relatively low natural occurrences in sea water is limited by method's relatively poor concentration detection sensitivity. A combination of CZE with indirect UV detection and transient isotachophoresis (tITP) pre-concentration was developed to evolve the CZE practical utility towards the quantitative determination of the minor sea water cationic components, strontium and lithium. The ITP stacking criterion at the initial stage of a CZE separation was met by taking a highly mobile sodium, the principle matrix cation, to perform the role of a leading ion, whereas the moderately mobile sample macrocomponents, Ca2+ and Mg2+, acted as the terminating ion. The carrier electrolyte, consisting of 10 mM 4-methylbenzylamine and 1.5 mM citric acid at pH 4.8, was found to be optimal to accommodate both analyte cations in the ITP range and then separate them in the CZE mode, with relative standard deviations for migration times from 0.06-0.15% and for peak areas from 4-8%. The limits of detection were 1.3 mg l(-1) Sr2+ and 0.12 mg l(-1) Li+. The developed method was applied to the analysis of a surface sea water sample and a sea water reference material. The results were in good agreement with those obtained by inductively coupled plasma atomic emission spectroscopy (ICP-AES) and electrothermal atomic absorption spectrometry (ET-AAS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号