首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An apertureless near-field scanning optical microscope (ANSOM) that utilizes the enhanced field around a gold nanosphere, which is attached to the end of an atomic force microscope (AFM) tip, is used to image the local dielectric constant of the patterned metallic surfaces and local electric field around plasmonic nanosphere samples. A colloidal gold nanosphere (approximately 50 nm diameter) is linked to the extremity of the conventional etched-silicon probe. The scattering of laser radiation (633 or 532 nm) is modulated by the oscillating nanosphere-functionalized silicon tip, and the scattered radiation is detected. The approach curve (scattering intensity as a function of the tip-sample distance), the polarization dependence (scattering intensity as a function of the excitation polarization direction), and ANSOM image contrast confirm that the spherical nanosphere attached to the silicon tip acts as a point dipole that interacts with the sample surface via a dipole-dipole coupling, in which the dipole created by the field at the tip interacts with its own image dipole in the sample. The image obtained with the nanoparticle functionalized tip provides a dielectric map of the sample surface with a spatial resolution better than 80 nm. In addition, we show that the functionalized tip is capable of imaging the local electric field distribution above the plasmonic nanosphere samples. Overall, the result shows that high-resolution ANSOM is possible without the aid of the lightning-rod effect. With an improved tip-fabrication method, we believe that the method can provide a versatile high-resolution chemical imaging that is not available from usual forms of ANSOM.  相似文献   

2.
Knowledge of the optical properties of atomic force microscopy (AFM) tips is relevant for the combination of optical and force spectroscopy. The luminescence properties of five commercial AFM tips were characterized using a combination of multiparameter fluorescence detection (MFD) and scanning confocal techniques. These include three Si3N4 tips, one silicon tip, and one high-density carbon (HDC) tip grown on top of a silicon tip. Time-decay histograms of the signal were analyzed to determine the strength of scatter, constant background, and fluorescence in the observed signal. Intensity and anisotropy images with optical resolution down to the diffraction limit were generated. The optical signal recorded from the apex of the Si3N4 tips ranged from 0.7 to 1.9 times the count rates from single Rhodamine 110 molecules under similar illumination conditions. The signal is predominantly composed of scatter and background (>85%), plus a small fluorescence component with lifetimes between 1 and 3 ns. The intensity of the recorded signal fell with increasing distance from the apex, and by 300 nm the signals fell below single-molecule levels for all Si3N4 cantilevers. Silicon cantilevers demonstrated very low count rates relative to single-molecule measurements under all conditions, and virtually no fluorescence. The high-density carbon tips also demonstrated low count rates, but the signal contained a short lifetime fluorescence component (0.7 ns). The intensity of the signals from each of the tips was geometry dependent, demonstrating the highest intensities at the edges and corners. Likewise, the anisotropy of all tip signals was observed to be geometry dependent, with the dependence varying on a case-by-case basis. The implications for using confocal illumination instead of total internal reflection are discussed.  相似文献   

3.
Two‐dimensional (2D) lead‐free halide perovskites have generated enormous perception in the field of optoelectronics due to their fascinating optical properties. However, an in‐depth understanding on their shape‐controlled charge‐carrier recombination dynamics is still lacking, which could be resolved by exploring the photoluminescence (PL) blinking behaviour at the single‐particle level. Herein, we demonstrate, for the first time, the synthesis of nanocrystals (NCs) and 2D nanosheets (NSs) of layered mixed halide, Cs3Bi2I6Cl3, by solution‐based method. We applied fluorescence microscopy and super‐resolution optical imaging at single‐particle level to investigate their morphology‐dependent PL properties. Narrow emission line widths and passivation of non‐radiative defects were evidenced for 2D layered nanostructures, whereas the activation of shallow trap states was recognized at 77 K. Interestingly, individual NCs were found to display temporal intermittency (blinking) in PL emission. On the other hand, NS showed temporal PL intensity fluctuations within localized domains of the crystal. In addition, super‐resolution optical image of the NS from localization‐based method showed spatial inhomogeneity of the PL intensity within perovskite crystal.  相似文献   

4.
Spectrally and time-resolved single-molecule fluorescence spectroscopy was used to investigate fluctuations of the photophysical characteristics of different types of semiconductor nanocrystals (NCs) at room temperature. Correlation of photoluminescence (PL) emission maxima, decay time, and intensity of individual NCs with millisecond time resolution reveals new sources of intensity fluctuations and photophysical properties. In particular, we demonstrate that independent of quenched states spectral diffusion is associated with changes of the radiative rate constant k(r) by means of the quantum-confined Stark effect. Correlation of the different photophysical parameters revealed an intrinsic nonradiative rate and enabled the disentangling of intrinsic and extrinsic nonradiative rate constants. Moreover, it allowed us to assess the PL quantum yield of single NCs. Finally, the presented technique was successfully applied to demonstrate that the addition of antiblinking reagents such as mercaptoethylamine accelerates the observed fluctuations between different photophysical states.  相似文献   

5.
We describe measurements of the scattering of visible light from an evanescent field by both spherical particles (R = 1-10 mum) that are glued to atomic force microscopy (AFM) cantilevers, and by sharp tips (R < 60 nm) that were incorporated onto the cantilevers during manufacture. The evanescent wave was generated at the interface between a flat plate and an aqueous solution, and an atomic force microscope was used to accurately control the separation, h, between the particle and the flat plate. We find that, for sharp tips, the intensity of scattered light decays exponentially with separation between the tip and the plate all the way down to h approximately 0. The measured decay length of scattered intensity, delta, is the same as the theoretical decay length of the evanescent intensity in the absence of the sharp tip. For borosilicate particles, (R = 1-10 mum), the scattering also decays exponentially with separation at large separations. However, when the separation is less than roughly 3delta, the measured scattering intensity is smaller in magnitude than that which would be predicted by extrapolating the exponential decay observed at large separations. For these particles, the scattering approximately fits the sum of two exponentials. The magnitude of the deviation from exponential at contact was roughly 10-15% for R = 1 mum particles and about 30% for larger particles and is larger for s-polarized light. Preliminary experiments on polystyrene particles shows that the scattering is also smaller than exponential at small separations but that the deviation from exponential is larger for p-polarized light. In evanescent wave AFM (EW-AFM) the scattering-separation can be calibrated for situations where the scattering is not exponential. We discuss possible errors that could be introduced by assuming that exponential decay of scattering continues down to h = 0.  相似文献   

6.
Two-dimensional (2D) lead-free halide perovskites have generated enormous perception in the field of optoelectronics due to their fascinating optical properties. However, an in-depth understanding on their shape-controlled charge-carrier recombination dynamics is still lacking, which could be resolved by exploring the photoluminescence (PL) blinking behaviour at the single-particle level. Herein, we demonstrate, for the first time, the synthesis of nanocrystals (NCs) and 2D nanosheets (NSs) of layered mixed halide, Cs3Bi2I6Cl3, by solution-based method. We applied fluorescence microscopy and super-resolution optical imaging at single-particle level to investigate their morphology-dependent PL properties. Narrow emission line widths and passivation of non-radiative defects were evidenced for 2D layered nanostructures, whereas the activation of shallow trap states was recognized at 77 K. Interestingly, individual NCs were found to display temporal intermittency (blinking) in PL emission. On the other hand, NS showed temporal PL intensity fluctuations within localized domains of the crystal. In addition, super-resolution optical image of the NS from localization-based method showed spatial inhomogeneity of the PL intensity within perovskite crystal.  相似文献   

7.
We investigate the structure of the [bmim][Tf(2)N]/silica interface by simulating the indentation of a thin (4 nm) [bmim][Tf(2)N] film by a hard nanometric tip. The ionic liquid/silica interface is represented in atomistic detail, while the tip is modelled by a spherical mesoscopic particle interacting via an effective short-range potential. Plots of the normal force (F(z)) on the tip as a function of its distance from the silica surface highlight the effect of weak layering in the ionic liquid structure, as well as the progressive loss of fluidity in approaching the silica surface. The simulation results for F(z) are in near-quantitative agreement with new AFM data measured on the same [bmim][Tf(2)N]/silica interface under comparable thermodynamic conditions.  相似文献   

8.
Zn(1-x)Mn(x)Te nanocrystals (NCs), at various concentrations x, were successfully grown in a host glass matrix by the fusion method after appropriate annealing. Growth of these NCs was evidenced by optical absorption (OA), X-Ray Diffraction (XRD), magnetic force microscopy (MFM) and photoluminescence (PL) measurements. From the room temperature OA spectra, it was possible to observe the formation of two well defined, different sized groups of NCs, one attributed to quantum dots (QDs) and the other to bulk-like nanocrystals (NCs). XRD results have confirmed that the cubic zincblend structure of nanoparticles is not altered by the substitutional incorporation of Mn(2+) ions into the ZnTe NCs. MFM images supported the OA spectra results and thus provided additional confirmation of the formation of Zn(1-x)Mn(x)Te magnetic nanoparticles in the host glass matrix. The two groups of NCs were also observed in the PL spectra as well as deep defects attributed to the presence of oxygen centers in the electronic structure of the Zn(1-x)Mn(x)Te NCs. Strong agreement between the fitting model, based on rate equation, and experimental PL intensity data at different temperatures demonstrates that this model adequately describes the energy transfer processes between the NCs and the defects of the Zn(1-x)Mn(x)Te system at different temperatures.  相似文献   

9.
Photoluminescence (PL) intermittency characteristics are examined for single quantum dots (QDs) in a CdSe QD sample synthesized at a slow rate at 75 degrees C. Although the PL quantum efficiency was relatively low ( approximately 0.25), we noticed that the PL intensity of single CdSe QDs fluctuated on a subsecond time scale with short-lived "on" and "off" states. The subsecond PL intensity fluctuations of CdSe QDs are different from "on" and "off" PL blinking generally observed for QDs fluctuating on a millisecond to minute time scale. We characterized single QDs by identifying polarized excitations, topographic imaging using atomic force microscopy (AFM), and transmission electron microscopy (TEM). From analysis of the PL intensity trajectories from >100 single CdSe QDs, the average intermittency time was 213 ms. From the PL quantum efficiency, slow growth of QDs, intensity trajectory analyses, and previous reports relating surface trap states and PL properties of QDs, we attribute the subsecond PL intensity fluctuations of single CdSe QDs and short-lived "on" and "off" states to a high-density distribution of homogeneous surface trap states.  相似文献   

10.
The optical properties of stoichiometric copper chalcogenide nanocrystals (NCs) are characterized by strong interband transitions in the blue part of the spectral range and a weaker absorption onset up to ~1000 nm, with negligible absorption in the near-infrared (NIR). Oxygen exposure leads to a gradual transformation of stoichiometric copper chalcogenide NCs (namely, Cu(2-x)S and Cu(2-x)Se, x = 0) into their nonstoichiometric counterparts (Cu(2-x)S and Cu(2-x)Se, x > 0), entailing the appearance and evolution of an intense localized surface plasmon (LSP) band in the NIR. We also show that well-defined copper telluride NCs (Cu(2-x)Te, x > 0) display a NIR LSP, in analogy to nonstoichiometric copper sulfide and selenide NCs. The LSP band in copper chalcogenide NCs can be tuned by actively controlling their degree of copper deficiency via oxidation and reduction experiments. We show that this controlled LSP tuning affects the excitonic transitions in the NCs, resulting in photoluminescence (PL) quenching upon oxidation and PL recovery upon subsequent reduction. Time-resolved PL spectroscopy reveals a decrease in exciton lifetime correlated to the PL quenching upon LSP evolution. Finally, we report on the dynamics of LSPs in nonstoichiometric copper chalcogenide NCs. Through pump-probe experiments, we determined the time constants for carrier-phonon scattering involved in LSP cooling. Our results demonstrate that copper chalcogenide NCs offer the unique property of holding excitons and highly tunable LSPs on demand, and hence they are envisaged as a unique platform for the evaluation of exciton/LSP interactions.  相似文献   

11.
Atomic force microscopy (AFM) is known to be capable of measuring local surface charge density based on the DLVO model. However, it has failed to distinguish charge density difference between the extracellular and cytoplasmic sides of purple membrane (PM) in previous studies. In this paper, tapping-mode AFM with thioglycolate-modified tips was used to image PM in buffers of different salt concentrations. When imaged in 25 mM KCl buffer, the topography of membranes appeared to be of two different types, one flat and the other domelike. Such a difference was not observed in buffers of high salt concentrations. This suggests that the topography variation results from differences in electrostatic interaction between the AFM tip and the different membrane surfaces. With images of papain-digested PM and high-resolution images of membrane surface structure, we proved that the membrane surfaces with flat topography were on the extracellular side while the surfaces with domelike topography were on the cytoplasmic side. Hence, this provides a straightforward method to distinguish the two sides of PM without the requirement of high-resolution imaging. Force-distance curves clearly demonstrated the different tip-sample interactions. The force curves recorded on the extracellular side of PM were consistent with the DLVO model, so its surface charge density can be estimated well. However, the curves recorded on the cytoplasmic side had a much longer decay length, which is supposed to be relevant to the flexibility of the C-terminus of bacteriorhodopsin (bR).  相似文献   

12.
Accurate knowledge of the nanoroughness of surfaces is crucial for many applications related to optics, electronics or tribology. Although atomic force microscopy (AFM) can image surfaces with a nanometre spatial resolution, the finite size of standard tips means that pores, pits or grooves with dimensions similar to or smaller than the tip apex will not be accurately imaged. Furthermore, standard tips are made of silicon or silicon nitride and are prone to wear. Mitigation may arise from the availability of AFM tips with a carbon nanotube (CNT) at their foremost end. This study compares the imaging performance of ultrasharp Si tips, CNT AFM tips prepared by a Langmuir‐Blodgett (LB) technique, and of CNT AFM tips prepared by a chemical vapour deposition (CVD) technique. The free length of the CNT AFM tips is in the range 80–200 and 600–750 nm, respectively. A polycrystalline niobium film surface is imaged that shows nanoroughness. The measurements demonstrate that CNT AFM tips allow excellent imaging if the scan parameters are adjusted very carefully. Nevertheless, in some cases distortions are found. The measured average grain diameter is 19.9 ± 3.6 nm in the case of a CNT AFM tip made by the LB technique, and 18.0 ± 3.3 nm in the case of a CNT AFM tip made by CVD. In addition to cross‐sections of topography images, also the power spectral density (PSD) is analyzed. An empirical approach for the readout of the characteristic length is suggested that involves the first derivative of the decadic logarithm of the PSD. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Zhang W  Zhong X 《Inorganic chemistry》2011,50(9):4065-4072
High-quality ZnS-CuInS(2) (ZCIS) alloy nanocrystals have been synthesized via reaction between the acetate salts of the corresponding metals and elemental sulfur in the presence of dodecanethiol in octadecene media at 230 °C. The PL emission wavelength can be tuned conveniently via variation of the stoichiometric ratio of their components. The influence of various experimental variables, including Zn/CuIn ratio, amount of sulfur and dodecanethiol, and reaction temperature, on the optical properties and composition of the obtained ZCIS NCs have been systematically investigated. The plain ZCIS NCs did show PL emission but with quite low PL quantum yield (typically below 3%). In order to improve the PL emission efficiency, the ZnS shell was subsequently overcoated around the ZCIS core NCs. With ZnS shell growth, the PL emission wavelength of the resulting ZCIS/ZnS NCs can cover from 518 to 810 nm with the maximum PL quantum efficiency up to 56%. Furthermore, the obtained ZCIS/ZnS NCs show promising photocatalytic activity in the degradation of rhodamine B.  相似文献   

14.
We have synthesized CdSe nanocrystals (NCs) in sizes from 2.2 to 5.1 nm passivated with hydrophobic trioctylphosphine oxide (TOPO) in combination trioctylphosphine (TOP) or tributylphosphine (TBP) to obtain particles of the type CdSe/TOPO/TOP or CdSe/TOPO/TBP. These NCs were then dispersed in aqueous solution of ionic or non-ionic surfactants (such as stearate, oleic acid, Tween) using a biphase (water and chloroform or hexane) transfer method. It is found that both the structure of the surfactant and the native surface of the ligand govern the coating of the NCs with surfactants. More specifically, the hydrophobicity-hydrophilicity balance of the surfactant regulates the coating efficacy, thereby transferring the NC from the organic to the aqueous phase. The type of ligand on the NCs and the kind of coating surfactant also affect photoluminescence (PL). The ratio of PL and absorbance unit (defined as PL per 0.1 AU) was implemented as a tool to monitor changes in PL intensity and wavelength as a function of size, coatings and surface defects. Finally, the distribution of CdSe nanocrystals between pseudophases in cloud point extraction was discussed based on experimental results. It was concluded that the size of CdSe nanocrystal present in an appropriate pseudophase is correlated with the way in which the non-ionic surfactant coats CdSe nanocrystals.
Figure
Coating of CdSe semiconductor nanocrystals with surfactants impacts nanocrystals’ spectral features. Absorbance of first exciton absorption band was used to estimate ability of surfactant to disperse CdSe nanocrystals. Photoluminescence (PL) intensity and position of PL band were analysed in terms of nanocrystal’s surface phenomena via surfactants applied for coating.  相似文献   

15.
In this paper,we report for the first time the controlled synthesis of lanthanide ion(Ln~(3+))-doped tetragonal-phase Na_3Zr F_7 nanocrystals(NCs)via a high-temperature co-precipitation approach.The as-synthesized Na_3Zr F_7 NCs are systematically studied by utilizing the XRD,TEM as well as high-resolution photoluminescence(PL)spectroscopy.The morphology and size for the as-synthesized Na_3Zr F_7 NCs can be finely controlled by changing the experimental parameters such as the amount of precursor,solvent ratio,reaction temperature and time.By utilizing the red-emitting Eu~(3+)ion as an efficient optical/structural probe,the successful hetero-valence doping of Ln~(3+)activators in the lattices of Na_3Zr F_7 NCs is well-established regardless of their different valences and radii between host Zr~(4+)ion and Ln~(3+)dopant.As a result,intense upconversion(UC)luminescence(UCL)ranging from UV to visible and to NIR spectral regions can be readily achieved after the doping of typical UCL couples of Yb~(3+)/Er~(3+),Yb~(3+)/Tm~(3+)and Yb~(3+)/Ho~(3+)into the lattices of Na_3Zr F_7 NCs when excited by using a 980-nm NIR diode laser.  相似文献   

16.
This report demonstrates the successful use of the inverted atomic force microscope (i-AFM) for tapping mode AFM imaging of cantilever-supported samples. i-AFM is a mode of AFM operation in which a sample supported on a tipless cantilever is imaged by one of many tips in a microfabricated tip array. Tapping mode is an intermittent contact mode whereby the cantilever is oscillated at or near its resonance frequency, and the amplitude and/or phase are used to image the sample. In the process of demonstrating that tapping mode images could be obtained in the i-AFM design, it was observed that the amplitude of the cantilever oscillation decreased markedly as the cantilever and tip array were approached. The source of this damping of the cantilever oscillations was identified to be the well-known "squeeze film damping", and the extent of damping was a direct consequence of the relatively shorter tip heights for the tip arrays, as compared to those of commercially available tapping mode cantilevers with integrated tips. The functional form for the distance dependence of the damping coefficient is in excellent agreement with previously published models for squeeze film damping, and the values for the fitting parameters make physical sense. Although the severe damping reduces the cantilever free amplitude substantially, we found that we were still able to access the low-amplitude regime of oscillation necessary for attractive tapping mode imaging of fragile molecules.  相似文献   

17.
We report on imaging living bacterial cells by using a correlated tapping-mode atomic force microscopy (AFM) and confocal fluorescence lifetime imaging microscopy (FLIM). For optimal imaging of Gram-negative Shewanella oneidensis MR-1 cells, we explored different methods of bacterial sample preparation, such as spreading the cells on poly-L-lysine coated surfaces or agarose gel coated surfaces. We have found that the agarose gel containing 99% ammonium acetate buffer can provide sufficient local aqueous environment for single bacterial cells. Furthermore, the cell surface topography can be characterized by tapping-mode in-air AFM imaging for the single bacterial cells that are partially embedded. Using in-air rather than under-water AFM imaging of the living cells significantly enhanced the contrast and signal-to-noise ratio of the AFM images. Near-field AFM-tip-enhanced fluorescence lifetime imaging (AFM-FLIM) holds high promise on obtaining fluorescence images beyond optical diffraction limited spatial resolution. We have previously demonstrated near-field AFM-FLIM imaging of polymer beads beyond diffraction limited spatial resolution. Here, as the first step of applying AFM-FLIM on imaging bacterial living cells, we demonstrated a correlated and consecutive AFM topographic imaging, fluorescence intensity imaging, and FLIM imaging of living bacterial cells to characterize cell polarity.  相似文献   

18.
Adsorption of PHB depolymerase from Ralstonia pickettii T1 to biodegradable polyesters such as poly[(R)-3-hydroxybutyrate] (PHB) and poly(l-lactic acid) (PLLA) was investigated by atomic force microscopy (AFM). The substrate-binding domain (SBD) with histidines within the N-terminus was prepared and immobilized on the AFM tip surface via a self-assembled monolayer with a nitrilotriacetic acid group. Using the functionalized AFM tips, the force-distance measurements for polyesters were carried out at room temperature in a buffer solution. In the case of AFM tips with immobilized SBD and their interaction with polyesters, multiple pull-off events were frequently recognized in the retraction curves. The single rupture force was estimated at approximately 100 pN for both PLLA and PHB. The multiple pull-off events were recognized even in the presence of a surfactant, which will prevent nonspecific interactions, but reduced when using polyethylene instead of polyesters as a substrate. The present results provide that the PHB depolymerase adsorbs specifically to the surfaces of polyesters and that the single unbinding event evaluated here is mainly associated with the interaction between one molecule of SBD and the polymer surface.  相似文献   

19.
Traditional CdSe‐based colloidal quantum dots (cQDs) have interesting photoluminescence (PL) properties. Herein we highlight the advantages in both ensemble and single‐nanocrystal PL of colloidal CsPbBr3 nanocrystals (NCs) over the traditional cQDs. An ensemble of colloidal CsPbBr3 NCs (11 nm) exhibits ca. 90 % PL quantum yield with narrow (FWHM=86 meV) spectral width. Interestingly, the spectral width of a single‐NC and an ensemble are almost identical, ruling out the problem of size‐distribution in PL broadening. Eliminating this problem leads to a negligible influence of self‐absorption and Förster resonance energy transfer, along with batch‐to‐batch reproducibility of NCs exhibiting PL peaks within ±1 nm. Also, PL peak positions do not alter with measurement temperature in the range of 25 to 100 °C. Importantly, CsPbBr3 NCs exhibit suppressed PL blinking with ca. 90 % of the individual NCs remain mostly emissive (on‐time >85 %), without much influence of excitation power.  相似文献   

20.
We developed a high-resolution scanning electrochemical microscope (SECM) for the characterization of various biological materials. Electrode probes were fabricated by Ti/Pt sputtering followed by parylene C-vapor deposition polymerization on the pulled optical fiber or glass capillary. The effective electrode radius estimated from the cyclic voltammogram of ferrocyanide was found to be 35 nm. The optical aperture size was less than 170 nm, which was confirmed from the cross section of the near-field scanning optical microscope (NSOM) image of the quantum dot (QD) particles with diameters in the range of 10-15 nm. The feedback mechanism controlling the probe-sample distance was improved by vertically moving the probe by 0.1-3 microm to reduce the damage to the samples. This feedback mode, defined as "standing approach (STA) mode" (Yamada, H.; Fukumoto, H.; Yokoyama, T.; Koike, T. Anal. Chem. 2005, 77, 1785-1790), has allowed the simultaneous electrochemical and topographic imaging of the axons and cell body of a single PC12 cell under physiological conditions for the first time. STA-mode feedback imaging functions better than tip-sample regulation by the conventionally available AFM. For example, polystyrene beads (diameter approximately 6 microm) was imaged using the STA-mode SECM, whereas imaging was not possible using a conventional AFM instrument.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号