首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Structure effects of various alkylcyclohexenes in heterogeneously catalyzed reactions are discussed. Experimentally evaluated adsorptivity and reactivity were interpreted by means of molecular modelling. Trends in these parameters are correlated with the properties of frontier orbitals. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
3.
基于在硼酸 硼砂介质中,钴和三乙醇胺协同催化过氧化氢氧化还原型罗丹明6G的反应,建立了协同催化荧光法测定痕量钴的新方法。钴的检出限为0.011ng/mL;测定范围0.016~0.80ng/mL。方法已用于小麦粉,玉米粉,VB12和人尿液等样品中痕量钴的测定。  相似文献   

4.
环己烯可控选择性催化氧化的最新进展(英文)   总被引:2,自引:0,他引:2  
环己烯是一种价格低廉易得的大宗化工原料,通常由苯选择性加氢来合成.该化合物虽然分子结构简单,但却有两个不同的反应位点.随着反应所发生的位点与反应深度的不同,环己烯的氧化反应可生成一系列不同氧化程度与官能团的产物的混合物.环己烯双键的氧化反应,可生成环氧环己烷,而环氧环己烷进一步水解,则生成1,2-环己二醇,其中,随着使用不同催化剂导致的反应机理差异,产物可分别为顺式或反式结构.在强氧化剂作用下,环己烯双键充分氧化,可生成己二酸.环己烯烯丙基C-H键氧化,则可随着反应深度的不同分别生成2-环己烯醇与2-环己烯酮.上述环己烯氧化产物都是重要的有机化工中间体.其中,环氧环己烷是农药杀螨剂的主要原料,也用作合成表面活性剂、橡胶助剂等有用产品;1,2-环己二醇可用于合成化工中间体邻苯二酚;环己烯醇与环己烯酮是生产除草剂、香水、药物的原料;己二酸则是合成重要产品尼龙-6,6的原料.因此,随着市场需求的变化,对环己烯氧化反应进行选择性控制,提高其中某种产物的选择性,是重要的化工合成技术,有着巨大的应用潜力;从而控制反应历程与深度是有机化工合成工艺研究中最具有挑战性的研究课题之一,有很好的科学意义.目前,人们对环己烯的选择性控制氧化反应已进行了广泛的研究.该反应可使用金属催化剂,包括铁、钴、镍、锰、铬、钒、钨、铜、钛、金、银、铋、锇、钼、镉等;也可以使用无金属催化剂如磺酸、2,2,2-三氟苯乙酮、类石墨相碳化氮(g-C3N4)等.反应可使用化学氧化剂,如间氯过氧苯甲酸、醋酸碘苯、过氧叔丁醇等,也可使用更加清洁的过氧化氢、分子氧.研究表明,催化剂的种类、用量,以及反应溶剂、温度、氧化剂等一系列外在条件,可以影响环己烯氧化反应的选择性.本文以反应所使用的氧化剂归类,总结了该课题的最新研究进展,以期对从事环己烯可控选择性氧化的学术与工业研究人员有所帮助.  相似文献   

5.
Cyclohexene transformation was used as test reaction to study the effect of lanthanum exchange on the catalytic behavior of HY zeolite cracking catalysts. Lanthanum has an overall positive effect increasing both acitivity and stability of HY zeolite and maximum selectivity towards isomerization products is obtained at higher conversion.
HY. , , HY. .
  相似文献   

6.
7.
Schiff碱及其配合物在治疗肿瘤、抗菌、仿生载氧等方面具有优异的性能,在催化领域中也表现出多种性质。本文合成了三种结构简单的Schiff碱配体以及它们的过渡金属配合物,并研究了其对环己烯的催化环氧化性能。配体的结构如下。  相似文献   

8.
A facile preparation method of nano-CuO catalysts, assembled in the hollow nanotube of halloysite nanotubes(HNTs), was developed. The characterizations of XRD, TEM, SEM, BET, XRF and FT-IR were used to analyze the structure and properties of the nano-CuO/HNT loaded catalyst. The XRD patterns indicated that the CuO nanoparticles on HNTs were monoclinic phase. The TEM-EDX and SEM images confirmed that most of nano-CuO catalysts with the crystal size of ca. 20 nm were assembled into the hollow nanotube of HNTs. The catalytic performance of the nano-CuO/HNT catalysts was evaluated by using selective oxidation of cyclohexene. The reaction temperature and recycling times were investigated. The results reveal that the nano-CuO/HNT catalysts exhibit an excellent catalytic oxidation performance for selective oxidation of cyclohexene to 2-cyclohexene-1-one.  相似文献   

9.
评述了近年来以环己烯为底物,双氧水为氧源,分别采用钨酸盐、钨酸、杂多酸及杂多酸盐、功能化分子筛和负载离子液体等为催化剂催化合成己二酸的研究进展.  相似文献   

10.
This paper describes an electrochemical coupling epoxidation of cyclohexene by molecular oxygen (O2) under mild reaction conditions. Herein, the electroreduction of O2 to hydrogen peroxide (H2O2) efficiently proceeds in a relatively environmentally friendly acetone/water medium containing electrolytes at 25–30 °C on a self-assembled H type of electrolysis cell with tree electrodes system, providing ca. 44.3 mM concentration of H2O2 under the optimal electrolysis conditions. The epoxidation of cyclohexene with in situ generated H2O2 simultaneously occurs upon catalysis by metal complexes, giving ca. 19.8 % of cyclohexene conversion with 78 % of epoxidative selectivity over the best catalyst 5-Cl-7-I-8-quinolinolato manganese(III) complex (Q3MnIII (e)). The present electrochemical coupling epoxidation result is nearly equivalent to the epoxidation of cyclohexene with adscititious H2O2 catalyzed by the Q3MnIII (e).  相似文献   

11.
环氧化物是一种重要的有机化工原料,广泛应用于合成化学、聚合物合成、食品化学、药物化学等领域中.烯烃催化环氧化反应是制备环氧化物的主要方法.一些均相钼配合物催化剂对烯烃环氧化反应表现出较好的催化性能.然而均相催化剂在实际生产中存在与产物分离困难、不易循环利用等问题.为解决上述问题,研究人员采用不同策略将各种钼配合物负载在固体载体上,制备出活性相对较高的多相钼配合物催化剂.然而,这类负载型钼配合物催化剂在以双氧水为氧化剂的反应体系中普遍存在活性组分易于流失的问题,导致催化剂的稳定性相对较差.因此,设计制备具有高活性和高稳定性的多相钼基烯烃环氧化催化剂具有重要的科学意义和实用价值.将过渡金属引入到具有MFI型拓扑结构的微孔分子筛的骨架上能够制备出具有高活性和高稳定性的杂原子分子筛催化剂.例如,采用直接水热法合成的钛硅分子筛(如TS-1)对以双氧水为氧化剂的小分子烯烃(如丙烯)环氧化反应表现出非常高的活性和稳定性.受这一研究结果启发,研究人员还开展了水热法合成Mo原子取代的MFI型分子筛(Mo-MFI).然而,由于Mo的离子半径较大(与Si相比),且合成体系中的Mo物种在碱性条件下易于发生沉淀,导致引入到分子筛骨架或孔道中的Mo含量极低.本文以Mo-EDTA配合物为钼源,四丙基氢氧化铵为模板剂,正硅酸乙酯为硅源,采用一步水热法合成了系列具有不同钼含量的Mo-MFI-n分子筛(n代表初始Si/Mo摩尔比).结合X-射线粉未衍射、红外光谱、紫外-可见吸收光谱、拉曼光谱、透射电子显微镜等表征技术对分子筛的结构、组成和Mo物种的状态进行了研究.结果表明,使用Mo-EDTA作为钼源有利于在分子筛骨架和孔道中引入更多的Mo物种;EDTA2?独特的配位能力使其在分子筛生长过程中能够有效调节Mo物种的释放率,并与硅物种缩合的速率匹配,从而使更多的Mo物种被引入到分子筛骨架中;同时也会有少量的Mo物种以骨架外Mo团簇的形式分布在分子筛的孔道内或孔口附近.通过以双氧水为氧化剂的环己烯环氧化反应考察了所制备的Mo-MFI-n催化剂的性能.经组分优化的Mo-MFI-50(初始Si/Mo摩尔比为50)催化剂能够在较温和的条件下有效地将环己烯转化为相应的环氧化物.在75℃下反应9 h后,环己烯转化率和环氧化物选择性分别高达93%和82%,性能明显优于传统水热法合成的Mo-MFI分子筛.此外,反应后的Mo-MFI-50分子筛催化剂通过简单的过滤而不需要焙烧处理就可多次重复利用,表现出较高的结构稳定性和循环性.  相似文献   

12.
Based on a few noteworthy features, cerium oxide nanoparticles have gained significance in nanotechnology. The effective microwave combustion method (MCM) and the conventional sol–gel (CRSGM) technologies are used in this study to successfully generate the crystalline CeO2 nanoparticles (NPs). Additionally, using a variety of spectroscopic and analytical methods, the synthesized CeO2 NPs are examined to assess to understand their structure and morphology. The XRD patterns of CeO2 NPs show that the structure exhibits a face-centered cubic lattice. Then, with demonstrated good conversion and selectivity, the impact of the epoxidation reaction of cyclohexene was examined. Finally, it can be said that using CeO2 nanoparticles is an efficient strategy to increase the catalytic activity toward the epoxidation reaction of cyclohexene. In the presence of acetonitrile as a solvent and H2O2 as an oxidant, the catalyst samples utilized in the cyclohexene epoxidation reaction were examined. In this study, the CeO2 catalyst outperformed all other catalysts in terms of cyclohexene maximal conversion and selectivity. After six prolonged cycles, the conversion of cyclohexene oxidation using CeO2 NPs shows reasonable recyclability and conversion efficiency, making it the best catalyst for an industrial production application.Additionally, the upgraded CeO2 nanoparticle electrode for nitrite detection has a linear concentration range (0.02–1200 M), a low detection limit (0.22 M), and a higher sensitivity (1.735 A M−1 cm−2). CeO2 NPs, on the other hand, have a quick response time, excellent sensitivity, and high selectivity. Additionally, the manufactured electrode is used to find nitrite in various water samples. Finally, it can be said that using CeO2 NPs is an efficient strategy to increase the catalytic activity toward cyclohexene oxidation and nitrite.  相似文献   

13.
Reaction of tetrakis(p-allyloxyphenyl)porphyrin and perfluoroalkanesulfonyl bromides givestetrakis(p-polyfluoroalkoxylphenyl)substituted porphyrins.The yields are over 90%.The synthesis ofthe metal ion complexes of these F-containing porphyrins is also reported.Preliminary results on thestudy of the catalytic activity of the manganese(Ⅲ)complexes of various fluorinated porphyrins onoxidation of cyclohexene indicate that the introduction of R_F group into porphyrin contributes to thestability of the catalysts.  相似文献   

14.
15.
Different types of titanosilicates are synthesized, structurally characterized, and subsequently catalytically tested in the liquid-phase epoxidation of cyclohexene. The performance of three types of combined zeolitic/mesoporous materials is compared with that of widely studied Ti-grafted-MCM-41 molecular sieve and the TS-1 microporous titanosilicate. The catalytic test results are correlated with the structural characteristics of the different catalysts. Moreover, for the first time, immersion calorimetry with the same substrate molecule as in the catalytic test reaction is applied as an extra means to interpret the catalytic results. A good correlation between catalytic performance and immersion calorimetry results is found. This work points out that the combination of catalytic testing and immersion calorimetry can lead to important insights into the influence of the materials structural characteristics on catalysis. Moreover, the potential of using immersion calorimetry as a screening tool for catalysts in epoxidation reactions is shown.  相似文献   

16.
The effect of complex formation between lead(IV) and trifluoroacetic or methanesulfonic acid and chloride ion in acetic acid and Freon 113 on the oxidation of cyclohexene by lead tetraacetate was investigated. As a result of the reaction the -chlorocyclohexyl esters of the corresponding acids are formed with high yields. The formation of the complexes Pb(OAc)4–nLn and Pb(OAc)4–(n+1)LnCl, where L = CF3CO2- or CH3SO3- with n=1 or 2, was demonstrated by potentiometric titration. A scheme is proposed for the oxidation of cyclohexene with the participation of unlike-ligand complexes of Pb(IV).Translated from Teoreticheskaya Eksperimental'naya Khimiya, Vol. 21, No. 5, pp. 567–572, September–October, 1985.  相似文献   

17.
A catalytic membrane hybrid system based on a cermet membrane with a channel size 〈d〉 of ~0.12 μm has been produced using sol-gel processing. A layer of a superfine methanol conversion catalyst with the composition Cr2O3 · Al2O3 · ZnO has been formed on the inner surface of the channels, and a thin oxide coating of composition P0.03Ti0.97O2 ± δ with a homogeneous porous structure and 〈d〉 ~ 2 nm has been formed on the geometric membrane surface. The methanol conversion rate and the gas permeability of the membrane depend considerably on the methanol vapor and gas (H2, He, CO2, Ar, CH4) flow directions. When methanol vapor diffuses toward the mesoporous layer, the catalytic activity is one order of magnitude higher and the gas permeability coefficients are 3–8 times lower than in the case of the reverse flow of the gaseous molecules. The temperature dependence of the gas permeability taking into account the possible types of mass transfer in porous solids suggests that, when the gases move toward the mesoporous coating consisting of phosphorus-modified titanium oxide, surface flow and activated diffusion dominate, whereas the reverse gas motion is dominated by free molecular flow.  相似文献   

18.
The intent of the study is to attain a high selectivity rate and stable interaction between metals in any heterogeneous catalyst. Cyclohexene is extremely valuable in industrial domains such as the synthesis of perfumes and nylons, and the mesoporous alumina was upstretched with a various ratio of bimetal copper (10%) and nickel (5%, 10%, 15%, and 20%) under wet impregnation procedures by the mesoporous aluminum catalyst. This impregnation of a metal and catalyst was used to assess the highest conversion and selectivity of cyclohexene to cyclohexanol. This catalytic nature was validated by analyzing the crystal structure and size using the X-ray diffraction technique. The functional group is identified using FT-IR (Fourier Transform Infrared Spectroscopy), while the surface area is assessed using BET (Brunauer-Emmet-Teller). HR-TEM (transmission electron microscopy) is used to validate the morphology of catalysts and their surface layers; HR-SEM (Scanning Electron Microscopy) is used to highlight and assess microparticles; and NH3TPD (Temperature-Programmed Desorption) is used to measure the overall acidity of the catalyst. The catalytic performance was proved by the yield achieved by varying parameters such as temperature, pressure, WHSV−1, reaction time, and solvents, which yielded over 98.5% in both cyclohexene conversion and selectivity. In the conversion of the product, H2O2 performs as an oxidant, and acetonitrile serves as a solvent at constant mild conditions of 90 °C and 20 bar pressure. Furthermore, even after seven successive runs with the Al2O3/Cu (10%)-Ni (15%) mixture, remarkable reusability was attained despite a minor decline in cyclohexanol selectivity. The effective impregnation of copper and nickel into supported mesoporous Al2O3 produced a long-lasting, stable hybrid nanostructure with excellent stability and no metal leaching. The current synthesis protocol's advantages and qualities include its efficiency, cost-effectiveness, ecological sustainability, and comfort of synthesis with readily available components.  相似文献   

19.
20.
Cyclohexene can be oxidized directly to 1, 2-cyclohexanediol with aqueous hydrogen peroxide under solvent-free condition using a heteropolyphosphatotungstate catalyst. And an isolated yield of 54% was obtained in this catalytic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号