首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High mass-resolving power has been shown to be useful for studying the conformational dynamics of proteins by hydrogen/deuterium (H/D) exchange. A computer algorithm was developed that automatically identifies peptides and their extent of deuterium incorporation from H/D exchange mass spectra of enzymatic digests or fragment ions produced by collisionally induced dissociation (CID) or electron capture dissociation (ECD). The computer algorithm compares measured and calculated isotopic distributions and uses a fast calculation of isotopic distributions using the fast Fourier transform (FFT). The algorithm facilitates rapid and automated analysis of H/D exchange mass spectra suitable for high-throughput approaches to the study of peptide and protein structures. The algorithm also makes the identification independent on comparisons with undeuterated control samples. The applicability of the algorithm was demonstrated on simulated isotopic distributions as well as on experimental data, such as Fourier transform ion cyclotron resonance (FTICR) mass spectra of myoglobin peptic digests, and CID and ECD spectra of substance P.  相似文献   

2.
A new method is presented to accurately determine the probability of having a deuterium or hydrogen atom on a specific amide position within a peptide after deuterium/hydrogen (D/H) exchange in solution. Amide hydrogen exchange has been proven to be a sensitive probe for studying protein structures and structural dynamics. At the same time, mass spectrometry in combination with physical fragmentation methods is commonly used to sequence proteins based on an amino acid residue specific mass analysis. In the present study it is demonstrated that the isotopic patterns of a series of peptide fragment ions obtained with capillary-skimmer dissociation, as observed with a 9.4 T Fourier transform ion cyclotron resonance (FTICR) mass spectrometer, can be used to calculate the isotopic state of specific amide hydrogens. This calculation is based on the experimentally observed isotopic patterns of two consecutive fragments and on the isotopic binomial distributions of the atoms in the residue constituting the difference between these two consecutive fragments. The applicability of the method is demonstrated by following the sequence-specific D/H exchange rate in solution of single amide hydrogens within some peptides.  相似文献   

3.
The difficulty with integrating solution-phase hydrogen/deuterium exchange (HDX) and tandem mass spectrometry is that the energy added to cause fragmentation might promote gas-phase migration of the added deuterium atoms. Here, we compare the solution-phase HDX profiles generated from a- b- and y-type fragment ion series originating from capillary-skimmer dissociation. The isotopic distributions of fragments from the different fragment ion types were used to determine the isotopic state of the amide hydrogen within a specific residue. Even though the same amide hydrogen was examined, the result was different for different fragment ion types. This observation indicates that different fragment series are not equally subjected to inter-molecular migration during collision-induced dissociation (CID). We also investigated the gas-phase reactivity of originally undeuterated CID fragments of penta-phenylalanine using gas-phase HDX in an external accumulation hexapole. The incorporation of deuterium into the different fragments was studied as a function of hexapole pressure. It was found that different b- and y-ions from the same peptide had different gas-phase reactivity. However, the a-ions did not display significant gas-phase reactivity. The observed behavior has significant impact on any method that involves comparing the isotopic distributions of different fragment ions. Great care has to be taken in the interpretation of the HDX data using CID to increase the spatial resolution. The isotopic state observed after solution-phase exchange might be more preserved for some CID-fragment types.  相似文献   

4.
Gas-phase structures of noncovalent complexes between the glycopeptide antibiotics vancomycin, eremomycin, ristocetin, and pseudo aglyco-ristocetin and the cell-wall mimicking peptides N-acetyl-D-Alanyl-D-Alanine, N-acetyl-Glycyl-D-Alanine, and N,N′-di-acetyl L-Lysyl-D-Alanyl-D-Alanine have been probed by hydrogen/deuterium (H/D) exchange using ND3 as reagent gas. The noncovalent complexes were transferred from solution to the vacuum using electrospray ionization. The H/D exchange of the solvent-free ions was studied in a Fourier transform ion cyclotron resonance mass spectrometer. The H/D exchange behavior of the free antibiotics and the free peptides were compared with the exchange observed for the antibiotic–peptide complexes. A general increase was found in the degree of deuterium incorporation upon complex formation with the ligand, which indicates that the peptide binding makes more sites on the antibiotic capable of taking part in the H/D exchange. Apart from H/D exchange, adduct formation with ND3 was observed, but only for the singly protonated peptides and the doubly protonated [ristocetin+N-acetyl-D-Alanyl-D-Alanine]. This marked difference in chemical reactivity of closely related systems such as [ristocetin+N-acetyl-Glycyl-D-Alanine] and [ristocetin+N-acetyl-D-Alanyl-D-Alanine] indicates that the gas-phase structures of these noncovalent complexes are quite sensitive to small changes in the primary structures of the peptides. The gas-phase structures of the antibiotic–peptide complexes are probably different from the solution-phase structures, with the peptides no longer bound to the characteristic solution-phase binding pockets of the antibiotics.  相似文献   

5.
Information about protein conformation can be obtained with hydrogen/deuterium exchange (HDX) mass spectrometry. The isotopic solution-phase exchange of specific amide hydrogen atoms can be followed using low-vacuum nozzle-skimmer collision-induced dissociation (CID). In this study, the nozzle-skimmer technique was complemented by electron capture dissociation (ECD) Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS). The solution-phase exchange at a specific residue is monitored by comparing isotopic distributions of two consecutive b- or c-type ions. While nozzle-skimmer fragmentation takes place in the low-vacuum region of the mass spectrometer, ECD occurs at ultra-high vacuum within the mass analyzer cell of the FTICR mass spectrometer. The dissociations take place at 10(-4) and 10(-9) mbar, respectively. Low-vacuum nozzle-skimmer fragmentation can result in intramolecular exchange between product ions and solvent molecules in the gas phase. Consequently, the solution-phase information about protein or peptide conformation is lost. It was not possible to monitor isotopic solution-phase exchange at the eighth residue in substance P, (Phe)8, with nozzle-skimmer CID. By using the in-cell ECD fragmentation method, the solution-phase exchange at the (Phe)8 residue was preserved during mass spectrometric analysis. This result shows the complementary aspects of applying fragmentation at low and at high vacuum, when studying isotopic exchange in solution at specific residues using FTICRMS.  相似文献   

6.
Hydrogen/deuterium exchange monitored by mass spectrometry is an important non-perturbing tool to study protein structure and protein–protein interactions. However, water in the reversed-phase liquid chromatography mobile phase leads to back-exchange of D for H during chromatographic separation of proteolytic peptides following H/D exchange, resulting in incorrect identification of fast-exchanging hydrogens as unexchanged hydrogens. Previously, fast high-performance liquid chromatography (HPLC) and supercritical fluid chromatography have been shown to decrease back-exchange. Here, we show that replacement of up to 40% of the water in the LC mobile phase by the modifiers, dimethylformamide (DMF) and N-methylpyrrolidone (NMP) (i.e., polar organic modifiers that lack rapid exchanging hydrogens), significantly reduces back-exchange. On-line LC micro-ESI FT-ICR MS resolves overlapped proteolytic peptide isotopic distributions, allowing for quantitative determination of the extent of back-exchange. The DMF modified solvent composition also improves chromatographic separation while reducing back-exchange relative to conventional solvent.  相似文献   

7.
Management of the enormous amount of data produced during solution-phase hydrogen/deuterium exchange monitored by mass spectrometry has stimulated software analysis development. The proteolysis step of the experiment generates multiple peptide fragments, most of which overlap. Prior automated data reduction algorithms extract the deuteration level for individual peptides, but do not exploit the additional information arising from fragment overlap. Here, we describe an algorithm that determines discrete rate constant values to each of the amide hydrogens in overlapped fragments. By considering all of the overlapped peptide segments simultaneously, sequence resolution can be improved significantly, sometimes to the individual amino acid level. We have validated the method with simulated deuterium uptake data for seven overlapped fragments of a poly-Ala nonapeptide, and then applied it to extract rate constant values for the first 29?N-terminal amino acids of C22A FK506-binding protein.  相似文献   

8.
Knowledge about the structural and biophysical properties of proteins when they are free in solution and/or in complexes with other molecules is essential for understanding the biological processes that proteins regulate. Such knowledge is also important to drug discovery efforts, particularly those focused on the development of therapeutic agents with protein targets. In the last decade a variety of different covalent labeling techniques have been used in combination with mass spectrometry to probe the solution-phase structures and biophysical properties of proteins and protein—ligand complexes. Highlighted here are five different mass spectrometry—based covalent labeling strategies including: continuous hydrogen/deuterium (H/D) exchange labeling, hydroxyl radical-mediated footprinting, SUPREX (stability of unpurified proteins from rates of H/D exchange), PLIMSTEX (protein-ligand interaction by mass spectrometry, titration, and H/D exchange), and SPROX (stability of proteins from rates of oxidation). The basic experimental protocols used in each of the above-cited methods are summarized along with the kind of biophysical information they generate. Also discussed are the relative strengths and weaknesses of the different methods for probing the wide range of conformational states that proteins and protein-ligand complexes can adopt when they are in solution.  相似文献   

9.
Hydrogen/deuterium exchange in combination with mass spectrometry (H/D MS) is a sensitive technique for detection of changes in protein conformation and dynamics. However, wide application of H/D MS has been hindered, in part, by the lack of computational tools necessary for efficient analysis of the large data sets associated with this technique. We report a novel web-based application for automatic analysis of H/D MS experimental data. This application relies on the high resolution of mass spectrometers to extract all isotopic envelopes before correlating these envelopes with individual peptides. Although a fully automatic analysis is possible, a variety of graphical tools are included to aid in the verification of correlations and rankings of the isotopic peptide envelopes. As a demonstration, the rate constants for H/D exchange of peptides from rabbit muscle pyruvate kinase are mapped onto the structure of this protein.  相似文献   

10.
The goal of this study was to determine the utility of adding ion mobility spectrometry to studies probing the solution-phase hydrogen/deuterium exchange (HX) of proteins. The HX profile of the Hck SH3 domain was measured at both the intact protein and the peptic peptide levels in the Waters Synapt HDMS system which uses a traveling wave to accomplish ion mobility separation prior to time-of-flight (Tof) m/z analysis. The results indicated a similar loss of deuterium with or without use of mobility in the Synapt and a level of deuterium loss comparable with a non-mobility Q-Tof instrument. The drift time of this small protein and its peptic peptides did not noticeably change due to solution-based deuterium incorporation. Importantly, ion mobility separations provided an orthogonal dimension of separation in addition to the reversed-phase high-performance liquid chromatography (RP-HPLC). The additional dimension of separation allowed for the deconvolution of overlapping isotopic patterns for co-eluting peptides and extraction of valuable deuterium incorporation data for those peptides. Taken together, these results indicate that including ion mobility separation in HX MS analyses further improves the mass spectrometry portion of such experiments. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

11.
In a search for improved resolution of hydrogen/deuterium (H/D) exchange experiments analyzed by mass spectrometry (HXMS), we evaluated two methodologies for a detailed structural study of solvent accessibility in the case of the HET-s(218-295) prion protein. For the first approach, after incubation in the deuterated solvent, aggregated HET-s(218-295) was digested with pepsin and the generated peptides were analyzed by nanospray mass spectrometry in an ion trap, with and without collision-induced dissociation (CID). We compared deuterium incorporation in peptides as determined on peptide pseudomolecular ions and on b and y fragments produced by longer peptides under CID conditions. For both b and y fragment ions, an extensive H/D scrambling phenomenon was observed, in contrast with previous studies comparing CID-MS experiments and (1)H NMR data. Thus, the spatial resolution of HXMS experiments could not be improved by means of MS/MS data generated by an ion trap mass spectrometer. In a second approach, the incorporation of deuterium was analyzed by MS for 76 peptides of the HET-s(218-289) peptide mass fingerprint, and the use of shared boundaries among peptic peptides allowed us to determine deuteration levels of small regions ranging from one to four amino acids. This methodology led to evidence of highly protected regions along the HET-s(218-295) sequence.  相似文献   

12.
Presently different opinions exist as to the degree of scrambling of amide hydrogens in gaseous protonated peptides and proteins upon collisional activation in tandem mass spectrometry experiments. This unsettled controversy is not trivial, since only a very low degree of scrambling is tolerable if collision-induced dissociation (CID) should provide reliable site-specific information from (1)H/(2)H exchange experiments. We have explored a series of unique, regioselectively deuterium-labeled peptides as model systems to probe for intramolecular amide hydrogen migration under low-energy collisional activation in an orthogonal quadrupole time-of-flight electrospray ionization (Q-TOF ESI) mass spectrometer. These peptides contain a C-terminal receptor-binding sequence and an N-terminal nonbinding region. When the peptides form a receptor complex, the amide hydrogens of the interacting sequences are protected against exchange with the solvent, while the amide hydrogens of the nonbinding sequences exchange rapidly with the solvent. We have utilized such long-lived complexes to generate peptides labeled with deuterium in either the binding or nonbinding region, and the expected regioselectivity of this labeling was confirmed after pepsin proteolysis. CID of such deuterated peptides, [M + 2H](2+), yielded fragment ions (b- and y-ions) having a deuterium content that resemble the theoretical values calculated for 100% scrambling. Thus, complete randomization of all hydrogen atoms attached to nitrogen and oxygen occurs in the gaseous peptide ion prior to its dissociation.  相似文献   

13.
A previous paper considered the problems that presently limit the hydrogen exchange - mass spectrometry (HX-MS) method for studying the biophysical and functional properties of proteins. Many of these problems can be overcome by obtaining and analyzing hundreds of sequentially overlapping peptide fragments that cover the protein many times over (Mayne et al. J. Am. Soc. Mass Spectrom. 2011: ). This paper describes a computer program called ExMS that furthers this advance by making it possible to efficiently process crowded mass spectra and definitively identify and characterize these many peptide fragments. ExMS automatically scans through high resolution MS data to find the individual isotopic peaks and isotopic envelopes of a list of peptides previously identified by MS/MS. It performs a number of tests to ensure correct identification in spite of peptide overlap in both chromatographic and mass spectrometric dimensions and possible multi-modal envelopes due to static or dynamic structural heterogeneity or HX EX1 behavior. The program can automatically process data from many sequential HX time points with no operator intervention at the rate of ~2 sec per peptide per HX time point using desktop computer equipment, but it also provides for rapid manual checking and decision when ambiguity exists. Additional subroutines can provide a step by step report of performance at each test along the way and parameter adjustment, deconvolute isotopic envelopes, and plot the time course of single and multi-modal H-D exchange. The program will be available on an open source basis at:  相似文献   

14.
The gas phase H/D exchange reaction of bradykinin ions, as well as fragment ions of bradykinin generated through collisions in an orifice skimmer region, have been studied with a linear quadrupole ion trap (LIT) reflectron time-of-flight (rTOF) mass spectrometer system. The reaction in the trap takes only tens of seconds at a pressure of few mTorr of D2O or CD3OD. The exchange rate and hydrogen exchange level are not sensitive to the trapping q value over a broad range, provided q is not close to the stability boundary (q = 0.908). The relative rates and hydrogen exchange levels of protonated and sodiated +1 and +2 ions are similar to those observed previously by others with a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer system. The doubly and triply protonated ions show multimodal isotopic distributions, suggesting the presence of several different conformations. The y fragment ions show greater exchange rates and levels than a or b ions, and when water or ammonia is lost from the fragment ions, no exchange is observed.  相似文献   

15.
Although high-resolution Fourier transform ion cyclotron resonance mass spectrometry can resolve individual isotopic masses for biomolecules of more than 100 ku, its effective mass accuracy is limited by the distribution of naturally occurring rare isotopes (13C, 15N, 18O, 34S, etc.). In this article, we compare least-squares and maximum entropy methods for deconvolution of the isotopic natural abundance distribution to narrow the mass spectral isotopic abundance envelope for greatly enhanced effective mass resolution. We apply both methods to yield deconvolved high-resolution deuterium distributions for peptides and proteins subjected to H/D exchange prior to electrospray Fourier transform ion cyclotron resonance mass analysis. In addition, we show that even unresolved isotopic envelopes from a quadrupole mass spectrometer can be narrowed for considerably improved resolution there as well.  相似文献   

16.
Hydrogen/deuterium (H/D) exchange chemistry monitored by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry is used to study solution phase conformational changes of bradykinin, alpha-melanocyte stimulating hormone, and melittin as water is added to methanol-d4, acetonitrile, and isopropanol-d8 solutions. The results are interpreted in terms of a preference for the peptides to acquire more compact conformations in organic solvents as compared to the random conformations. Our interpretation is supported by circular dichroism spectra of the peptides in the same solvent systems and by previously published structural data for the peptides. These results demonstrate the utility of MALDI-TOF as a method to monitor the H/D exchange chemistry of peptides and investigations of solution-phase conformations of biomolecules.  相似文献   

17.
Genome sequencing projects produce large amounts of information that could be translated into potential protein sequences. Such amounts of material continuously increase protein database sizes. At present, 22 times more protein sequences are available in the SWISS-PROT and TrEMBL databases than 8 years ago in SWISS-PROT. One of the methods of choice for protein identification makes use of specific endoproteolytic cleavage followed by matrix-assisted laser desorption/ionisation mass spectrometric (MALDI-MS) analysis of the digested product. Since 1993, when this technique was first demonstrated, the conditions required for a correct identification have changed dramatically. Whilst 4-5 peptides with an uncertainty of 2-3 Da were sufficient for a correct identification in 1993, 10-13 peptides with less than 60 ppm mass error are now required for human and E. coli proteins. This evolution is directly related to the continuous increase in protein database sizes, which causes an increase in the number of false positive matches in identification results. Use of an information complement deduced from the primary protein sequence, in the process of identification by peptide mass fingerprints, can help to increase confidence in the identification results. In this article, we propose the exchange of labile hydrogen atoms with deuterium atoms to provide an alternative information complement. The exchange reaction with optimised techniques has shown an average 95% of hydrogen/deuterium (H/D) exchange on tryptic peptides. This level of exchange was sufficient to single out one or more peptides from a list of potential candidate proteins due to the dependence of H/D exchange on the peptide primary structure. This technique also has clear advantages in the identification of small proteins where direct protein identification is impaired by the limited number of endoproteolytic peptides. Then, information related to primary sequence obtained with this technique could help to identify proteins with high confidence without any expensive tandem mass spectrometry instruments.  相似文献   

18.
High throughput identification of proteins by peptide mass fingerprinting requires an efficient means of picking peaks from mass spectra. Here, we report the development of a peak harvester to automatically pick monoisotopic peaks from spectra generated on matrix-assisted laser desorption/ionisation time of flight (MALDI-TOF) mass spectrometers. The peak harvester uses advanced mathematical morphology and watershed algorithms to first process spectra to stick representations. Subsequently, Poisson modelling is applied to determine which peak in an isotopically resolved group represents the monoisotopic mass of a peptide. We illustrate the features of the peak harvester with mass spectra of standard peptides, digests of gel-separated bovine serum albumin, and with Escherictia coli proteins prepared by two-dimensional polyacrylamide gel electrophoresis. In all cases, the peak harvester proved effective in its ability to pick similar monoisotopic peaks as an experienced human operator, and also proved effective in the identification of monoisotopic masses in cases where isotopic distributions of peptides were overlapping. The peak harvester can be operated in an interactive mode, or can be completely automated and linked through to peptide mass fingerprinting protein identification tools to achieve high throughput automated protein identification.  相似文献   

19.
Multiply protonated ions of disulfide-intact and -reduced peptides were generated by electrospray ionization and studied by Fourier transform ion cyclotron resonance mass spectrometry. The effects of disulfide bonds on gas-phase deprotonation reactions and hydrogen/deuterium (H/D) exchange were investigated. Insight into conformations was gained from molecular dynamics calculations. For ions from three small peptides containing 9–14 amino acid residues, H/D exchange is more sensitive to changes in conformation than deprotonation. However, with both gas-phase reactions the more diffuse forms of the peptides (as determined by molecular modeling) react more readily. The effects of disulfide cleavage on the conformations and on the reactions were found to depend upon the sequence of the peptide. For [M + 3H]3+ of TGF-α (34–43), reduction of the disulfide linkage leads to a greatly extended structure and a dramatic increase in the rate and extent of H/D exchange. In contrast, [M + 2H]2+ of Arg8 -vasopressin becomes slightly more compact upon cleavage of the disulfide bond; these reduced ions are slower to react. For [M + 3H]3+ of somatostatin-14, reduction of the disulfide bond has little effect on conformation or gas-phase reactivity. Overall, these results indicate that there is no general rule on how cleavage of a disulfide bond will effect a peptide ion’s gas-phase reactivity.  相似文献   

20.
The usefulness of gas-phase H/D exchange is demonstrated to probe heterogeneous fragment and parent ion populations. Singly and multiply protonated peptides/proteins were fragmented by using sustained off-resonance irradiation collision-induced dissociation (SORI-CID). The fragments and the surviving precursor ions then all undergo H/D exchange in the gas-phase with either D(2)O or CD(3)OD under the same experimental conditions. Usually, 10 to 60 s of reaction time is adequate to monitor characteristic differences in the H/D exchange kinetic rates. These differences are then correlated to isomeric ion structures. The SORI-HDX method can be used to rapidly test fragment ion structures and provides useful insights into peptide fragmentation mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号