首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spreading and recoiling of water drops on several flat and macroscopically smooth model surfaces and on sized paper surfaces were studied over a range of drop impaction velocities using a high-speed CCD camera. The water drop spreading and recoiling results on several model hydrophobic and hydrophilic surfaces were found to be in agreement with observations reported in the literature. The maximum drop spreading diameter for those model surfaces at impact was found to be dependent upon the initial drop kinetic energy and the degree of hydrophobicity/hydrophilicity of the surface. The extent of the maximum drop recoiling was found to be much weaker for hydrophilic substrates than for hydrophobic substrates. Sized papers, however, showed an interesting switch of behaviour in the process of water drop impaction. They behave like a hydrophobic substrate when a water drop impacts on it, but like a hydrophilic substrate when water drop recoils. Although the contact angle between water and hydrophilic or hydrophobic non-porous surfaces changes from advancing to receding as reported in literature, the change of contact angle during water impact on paper surface is unique in that the level of sizing was found to have a smaller than expected influence on the degree of recoil. Atomic force microscopy (AFM) was used to probe fibres on a sized filter paper surface under water. The AFM data showed that water interacted strongly with the fibre even though the paper was heavily sized. Implications of this phenomenon were discussed in the context of inkjet print quality and of the surface conditions of sized papers. Results of this study are very useful in the understanding of inkjet ink droplet impaction on paper surfaces which sets the initial condition for ink penetration into paper after impaction.  相似文献   

2.
The adsorption of amyloid beta-peptide at hydrophilic and hydrophobic modified silicon-liquid interfaces was characterized by neutron reflectometry. Distinct polymeric films were used to obtain noncharged (Formvar), negatively (sodium poly(styrene sulfonate)) and positively charged (poly(allylamine hydrochloride)) hydrophilic as well as hydrophobic surfaces (polystyrene and a polysiloxane-dodecanoic acid complex). Amyloid beta-peptide was found to adsorb at positively charged hydrophilic and hydrophobic surfaces, whereas no adsorbed layer was detected on hydrophilic noncharged and negatively charged films. The peptide adsorbed at the positively charged film as patches, which were dispersed on the surface, whereas a uniform layer was observed at hydrophobic surfaces. The thickness of the adsorbed peptide layer was estimated to be approximately 20 A. The peptide formed a tightly packed layer, which did not contain water. These studies provide information about the affinity of the amyloid beta-peptide to different substrates in aqueous solution and suggest that the amyloid fibril formation may be driven by interactions with surfaces.  相似文献   

3.
The kinetics of adsorption of lysozyme and alpha-lactalbumin from aqueous solution on silica and hydrophobized silica has been studied. The initial rate of adsorption of lysozyme at the hydrophilic surface is comparable with the limiting flux. For lysozyme at the hydrophobic surface and alpha-lactalbumin on both surfaces, the rate of adsorption is lower than the limiting flux, but the adsorption proceeds cooperatively, as manifested by an increase in the adsorption rate after the first protein molecules are adsorbed. At the hydrophilic surface, adsorption saturation (reflected in a steady-state value of the adsorbed amount) of both proteins strongly depends on the rate of adsorption, but for the hydrophobic surface no such dependency is observed. It points to structural relaxation ("spreading") of the adsorbed protein molecules, which occurs at the hydrophobic surface faster than at the hydrophilic one. For lysozyme, desorption has been studied as well. It is found that the desorbable fraction decreases after longer residence time of the protein at the interface.  相似文献   

4.
利用荧光测活法比较了HRP在有机相与水相胶束体系中催化不同芳香胺类的动力学常数,发现在水相胶束体系中,HRP是在一个较严格的亲、疏水界面进行催化反应。同时对界面酶学性质进行了初步研究,讨论了在胶束中不同增溶位置对反应动力学常数的影响。  相似文献   

5.
Sum frequency generation (SFG) vibrational spectroscopy was employed to characterize the interfacial structure of eight individual amino acids--L-phenylalanine, L-leucine, glycine, L-lysine, L-arginine, L-cysteine, L-alanine, and L-proline--in aqueous solution adsorbed at model hydrophilic and hydrophobic surfaces. Specifically, SFG vibrational spectra were obtained for the amino acids at the solid-liquid interface between both hydrophobic d(8)-polystyrene (d(8)-PS) and SiO(2) model surfaces and phosphate buffered saline (PBS) at pH 7.4. At the hydrophobic d(8)-PS surface, seven of the amino acids solutions investigated showed clear and identifiable C-H vibrational modes, with the exception being l-alanine. In the SFG spectra obtained at the hydrophilic SiO(2) surface, no C-H vibrational modes were observed from any of the amino acids studied. However, it was confirmed by quartz crystal microbalance that amino acids do adsorb to the SiO(2) interface, and the amino acid solutions were found to have a detectable and widely varying influence on the magnitude of SFG signal from water at the SiO(2)/PBS interface. This study provides the first known SFG spectra of several individual amino acids in aqueous solution at the solid-liquid interface and under physiological conditions.  相似文献   

6.
The Pro-His-Ser-Arg-Asn (PHSRN) sequence in fibronectin is a second cell-binding site that synergistically affects Arg-Gly-Asp (RGD). The PHSRN peptide also induces cell invasion and accelerates wound healing. We report on the surface immobilization of PHSRN by spontaneous adsorption on polysiloxane thin films which have different surface free energy characteristics. Low-surface energy (hydrophobic) polysiloxane and the corresponding high-surface energy (hydrophilic) surfaces obtained by UV–ozone treatments were used as adsorbing substrates. The peptide adsorption process was investigated by quartz crystal microbalance with dissipation monitoring and atomic force microscopy. Both adsorption kinetics and peptide rearrangement dynamics at the solid interface were significantly different on the surface-modified films compared to the untreated ones. Fibroblast cells cultures at short times and in a simplified environment, i.e., a medium-free solution, were prepared to distinguish interaction events at the interface between cell membrane and surface-immobilized peptide for the two cases. It turned out that the cell-adhesive effect of immobilized PHSRN was different for hydrophobic compared to hydrophilic ones. Early signatures of cell spreading were only observed on the hydrophilic substrates. These effects are explained in terms of different spatial arrangements of PHSRN molecules immobilized on the two types of surfaces.  相似文献   

7.
Molecular modeling techniques have been used to investigate the interaction of L-lysine in aqueous medium with silanol and methyl sites onto quartz substrates. The substrate effect has been studied for partially hydrophilic surfaces formed by silanol and methyl groups with a ratio of 1:5 and hydrophobic fully methylated surfaces. Molecular dynamics and static calculations indicate that L-lysine does not show any significant interaction with fully methylated surfaces, while its interaction with hydroxylated/methylated surfaces is dominated by electrostatic and H-bond terms. Accordingly, on fully methylated surfaces there is no preferential orientation of L-lysine with respect to the surface, while for hydroxylated/methylated surfaces the L-lysine-surface interaction mainly depends on the molecular orientation, with a preferred geometry involving the ammonium group pointing toward the silanol site. The structure of water shells around L-lysine molecules was shown to be strongly affected by the relative hydrophilic/hydrophobic character of the surfaces. In particular, the order is almost completely lost for partially hydrophilic surfaces, while well-defined hydration shells around L-lysine are obtained for hydrophobic surfaces.  相似文献   

8.
亲水膜的表面改性及在膜蒸馏中的应用   总被引:4,自引:0,他引:4  
膜的微孔性和疏水性是水溶液膜蒸馏的两个基本条件,迄今人们均采用疏水性高分子材料制成疏水微孔膜用于膜蒸馏研究。本文采用辐照接枝聚合和等离子体表面聚合的方法,将亲水的醋酸纤维素微孔膜和硝酸纤维素微孔膜表面疏水化改性,成功地用于膜蒸馏研究,大大扩展了疏水微孔膜的材料来源。实验结果表明,亲水膜表面改性得到的疏水膜,其膜蒸馏性能不低于疏水材料制成的膜,尤其是等离子体聚合法可以实现多种特殊单体在多孔的材料表面聚合,成为制备高性能疏水微孔膜的有效手段,为膜蒸馏的深入发展和实用化创造了有利条件。  相似文献   

9.
The adsorption of a 14-amino acid amphiphilic peptide, LK14, which is composed of leucine (L, nonpolar) and lysine (K, charged), on hydrophobic polystyrene (PS) and hydrophilic silica (SiO2) was investigated in situ by quartz crystal microbalance (QCM), atomic force microscopy (AFM), and sum frequency generation (SFG) vibrational spectroscopy. The LK14 peptide, adsorbed from a pH 7.4 phosphate-buffered saline (PBS) solution, displayed very different coverage, surface roughness and friction, topography, and surface-induced orientation when adsorbed onto PS versus SiO2 surfaces. Real-time QCM adsorption data revealed that the peptide adsorbed onto hydrophobic PS through a fast (t < 2 min) process, while a much slower (t > 30 min) multistep adsorption and rearrangement occurred on the hydrophilic SiO2. AFM measurements showed different surface morphologies and friction coefficients for LK14 adsorbed on the two surfaces. Surface-specific SFG spectra indicate very different ordering of the adsorbed peptide on hydrophobic PS as compared to hydrophilic SiO2. At the LK14 solution/PS interface, CH resonances corresponding to the hydrophobic leucine side chains are evident. Conversely, only NH modes are observed at the peptide solution/SiO2 interface, indicating a different average molecular orientation on this hydrophilic surface. The surface-dependent difference in the molecular-scale peptide interaction at the solution/hydrophobic solid versus solution/hydrophilic solid interfaces (measured by SFG) is manifested as significantly different macromolecular-level adsorption properties on the two surfaces (determined via AFM and QCM experiments).  相似文献   

10.
The adsorption and activity of Thermomyces lanuginosus lipase (TLL) was measured with dual polarization interferometry (DPI) and confocal microscopy at a hydrophilic and hydrophobic surface. In the adsorption isotherms, it was evident that TLL both had higher affinity for the hydrophobic surface and adsorbed to a higher adsorbed amount (1.90 mg/m2) compared to the hydrophilic surface (1.40–1.50 mg/m2). The thickness of the adsorbed layer was constant (3.5 nm) on both surfaces at an adsorbed amount >1.0 mg/m2, but decreased on the hydrophilic surface at lower surface coverage, which might be explained by partially unfolding of the TLL structure. However, a linear dependence of the refractive index of the adsorbed layer on adsorbed amount of TLL on C18 surfaces indicated that the structure of TLL was similar at low and high surface coverage. The activity of adsorbed TLL was measured towards carboxyfluorescein diacetate (CFDA) in solution, which upon lipase activity formed a fluorescent product. The surface fluorescence intensity increase was measured in a confocal microscope as a function of time after lipase adsorption. It was evident that TLL was more active on the hydrophilic surface, which suggested that a larger fraction of adsorbed TLL molecules were oriented with the active site facing the solution compared to the hydrophobic surface. Moreover, most of the activity remained when the TLL surface coverage decreased. Earlier reports on TLL surface mobility on the same surfaces have found that the lateral diffusion was highest on hydrophilic surfaces and at low surface coverage of TLL. Hence, a high lateral mobility might lead to a longer exposure time of the active site towards solution, thereby increasing the activity against a water-soluble substrate.  相似文献   

11.
Recent experiments (Afsar-Siddiqui, A. B.; Luckham, P. F.; Matar, O. K. Langmuir 2004, 20, 7575-7582) on the spreading of aqueous droplets containing cationic surfactants over thin aqueous films supported by negatively charged substrates demonstrated trends in the spreading behavior with either increasing surfactant concentration or increasing film thickness. Although the substrate is initially hydrophilic and the droplet spreads, surfactant adsorption at the substrate renders it hydrophobic leading to droplet retraction. We generate a model here using lubrication theory that allows the effect of the surfactant on the wettability to be taken into account. Our numerical results show that due to basal adsorption of surfactant at the interface, the initially hydrophilic solid substrate is rendered hydrophobic. This then drives droplet retraction and dewetting, which is in agreement with the experimentally observed trends.  相似文献   

12.
Static and dynamic contact angles of aqueous solutions of three surfactants--anionic sodium dodecyl sulfate (SDS), cationic dodecyltrimethylammonium bromide (DTAB), and nonionic pentaethylene glycol monododecyl ether (C(12)E(5))--were measured in the pre- and micellar concentration ranges on polymer surfaces of different surface free energy. The influence of the degree of substrate hydrophobicity, concentration of the solution, and ionic/nonionic character of surfactant on the drop spreading was investigated. Evaporation losses due to relatively low humidity during measurements were taken into account as well. It was shown that, in contrast to the highly hydrophobic surfaces, contact angles for ionic surfactant solutions on the moderately hydrophobic surfaces strongly depend on time. As far as the nonionic surfactant is considered, it spreads well over all the hydrophobic polymer surfaces used. Moreover, the results obtained indicate that spreading (if it occurs) in the long-time regime is controlled not only by the diffusive transport of surfactant to the expanding liquid-vapor interface. Obviously, another process involving adsorption at the expanding solid-liquid interface (near the three-phase contact line), which goes more slowly than diffusion, has to be active.  相似文献   

13.
In this paper we describe the formation and characterization of self-assembled monolayers of octadecylphosphonic acid (ODPA) on epitaxial (0001) GaN films on sapphire. By immersing the substrate in its toluene solution, ODPA strongly adsorbed onto UV/O 3-treated GaN to give a hydrophobic surface. Spectroscopic ellipsometry verified the formation of a well-packed monolayer of ODPA on the GaN substrate. In contrast, adsorption of other primarily substituted hydrocarbons (C n H 2 n+1 X; n = 16-18; X = -COOH, -NH 2, -SH, and -OH) offered less hydrophobic surfaces, reflecting their weaker interaction with the GaN substrate surfaces. A UV/O 3-treated N-polar GaN had a high affinity to the -COOH group in addition to ODPA, possibly reflecting the basic properties of the surface. These observations suggested that the molecular adsorption was primarily based on hydrogen bond interactions between the surface oxide layer on the GaN substrate and the polar functional groups of the molecules. The as-prepared ODPA monolayers were desorbed from the GaN substrates by soaking in an aqueous solution, particularly in a basic solution. However, ODPA monolayers heated at 160 degrees C exhibited suppressed desorption in acidic and neutral aqueous solution maybe due to covalent bond formation between ODPA and the surface. X-ray photoelectron spectroscopy provided insight into the effect of the UV/O 3 treatment on the surface composition of the GaN substrate and also the ODPA monolayer formation. These results demonstrate that the surface of a GaN substrate can be tailored with organic molecules having an alkylphosphonic acid moiety for future sensor and device applications.  相似文献   

14.
为探讨聚合物-水界面十八烷基聚氧乙烯链(SPEO)空间结构和白蛋白选择性吸附行为的内在联系,本文采用聚甲基丙烯酸甲酯接枝十八烷基聚氧乙烯(PMMA-g-SPEO),通过不同热处理方式获得了具有“环形链”(A)和“尾形链”(B)结构的两种模型表面.在A表面,水相接触角随水化时间的延长而迅速降低,最终亲水性的界面可同时有效阻抗白蛋白和纤维蛋白原的吸附,但不呈现对白蛋白的选择性吸附;而在B表面,水相接触角随水化时间的延长变化不大,最终疏水性的界面可在有效阻抗纤维蛋白原的吸附同时,有效诱导白蛋白的选择性吸附,具有聚氧乙烯(PEO)阻抗非特异性吸附和十八烷基选择性吸附协同作用的特点.  相似文献   

15.
Wang S  Marchant RE 《Macromolecules》2004,37(9):3353-3359
We describe a series of fluorocarbon surfactant polymers designed for modifying fluorocarbon surfaces such as poly(tetrafluoroethylene). Novel fluorocarbon surfactant polymers poly(N-vinyldextranaldonamide-co-N-vinylperfluoroundecanamide), in which hydrophilic dextran oligosaccharides and hydrophobic perfluoroundecanoyl groups were incorporated sequentially onto a poly(vinylamine) backbone, were synthesized and characterized by FT-IR, NMR, and XPS spectroscopy. By adjusting the feed ratio of dextran to fluorocarbon branches, surfactant polymers with different hydrophilic/hydrophobic balances were prepared. The surface activity of the surfactants at the air/water interface was demonstrated by significant reductions in water surface tension. Surfactant adsorption and adhesion at the solid PTFE/aqueous interface were examined under well-defined dynamic flow conditions, using a rotating disk system. The surface activity at the air/water interface and adhesion stability on PTFE under an applied shear stress both increase with increasing density of fluorocarbon branches on the polymer backbone. The results show that stable surfactant adhesion on PTFE can be achieved by adjusting the hydrophilic dextran to hydrophobic fluorocarbon branch ratio.  相似文献   

16.
The monomolecular organisation of symmetric, chemically modified tetraether lipids caldarchaeol-PO(4) was studied using Langmuir film balance, ellipsometry, and atomic force microscopy (AFM). Solid silicon wafer substrates were modified to hydrophobic, hydrophilic, and amino-silanised surfaces; and Langmuir-Blodgett (LB)-films were transferred onto each. LB-caldarchaeol-PO(4) films were subjected to further rinsing with organic solvent and additional physical treatments, to compare their resistance and stability on chemisorbed (amino-silanised) and physisorbed (hydrophobic and hydrophilic) surfaces. The resistance and stability of these monolayer films was characterized by ellipsometry and AFM, and film thickness was determined using ellipsometry. AFM was also employed to observe surface morphology. Monolayer films on hydrophobic surfaces were found to be more resistant to rinsing with organic solvent and additional physical treatments than monolayer films on either amino-silanised or hydrophilic surfaces. The hydrophobic effect with hydrophobic surfaces appears to support the formation of stronger caldarchaeol-PO(4) films on silicon wafer substrates, with increased resistance and stability.  相似文献   

17.
Starting from gold chips, we have tailor-made three surfaces by the self-assembly monolayer technique: one entirely hydrophobic, one hydrophobic with dispersed carboxyl groups, and one hydrophilic, containing hydroxyl groups. Rhizomucor miehei lipase has been adsorbed to the hydrophobic and the hydrophilic surfaces and covalently bound to the surface containing carboxyl groups. The adsorption of two substrates-capric acid (decanoic acid) and monocaprin-on the lipase-covered surfaces was monitored by the surface plasmon resonance (SPR) technique. Biocatalysis was also performed in the SPR instrument by circulating a solution of the substrate, dissolved in an 85:15 water-glycerol mixture at a(w) = 0.81, through the instrument, thus exposing the capric acid or the monocaprin to the lipase-covered surfaces. The product composition was found to depend on the type of surface used. Lipase adsorbed at the hydrophilic surface favored hydrolysis, and capric acid was the main product formed when monocaprin was used as substrate. Lipase adsorbed at a hydrophobic surface and, in particular, lipase covalently bound to a hydrophobic surface favored condensation. More dicaprin than capric acid was formed in experiments with monocaprin as the substrate. Reactions performed outside the SPR instrument showed that small amounts of triglyceride were also formed under these conditions. We believe that this work constitutes the first example of the SPR instrument being used for in-situ biotransformation.  相似文献   

18.
The present contribution offers a unified explanation to three central phenomena in physical chemistry of interfaces in contact with aqueous solution: (1) Accumulation of large anions at the air/water interface. (2) Accumulation of neutral gas molecules near hydrophobic surfaces and the resulting hydrophobic interaction between two such surfaces, and (3) The Hofmeister effect, namely, the enhanced propensity of small ions to hydrophilic surfaces and large ions to hydrophobic surfaces. The common thread linking these phenomena is the free energy balance between ion or molecule hydration in solution and the cost of localizing these objects at the water-surface interface. Comparing the results of an abstract lattice-gas model to force spectroscopy data collected by AFM we reveal the underlying principles and demonstrate their universality.  相似文献   

19.
Fibronectin displacement at polymer surfaces   总被引:1,自引:0,他引:1  
The interactions of fibronectin with thin polymer films are studied in displacement experiments using human serum albumin. Fibronectin adsorption and exchange on two different maleic anhydride copolymer surfaces differing in hydrophobicity and surface charge density have been analyzed by quartz crystal microbalance and laser scanning microscopy with respect to adsorbed amounts, viscoelastic properties, and conformation. Fibronectin is concluded to become attached onto hydrophilic surfaces as a "softer", less rigid protein layer, in contrast to the more rigid, densely packed layer on hydrophobic surfaces. As a result, the fibronectin conformation is more distorted on the hydrophobic substrates together with remarkably different displacement characteristics in dependence on the adsorbed fibronectin surface concentration and the displacing albumin solution concentration. While the displacement kinetic remains constant for the strongly interacting surface, an acceleration in fibronectin exchange is observed for the weakly interacting surface with increasing fibronectin coverage. For displaced amounts, no change is determined for the hydrophobic substrate, in contrast to the hydrophilic substrate with a decrease of fibronectin exchange with decreasing coverage leading finally to a constant nondisplaceable amount of adsorbed proteins. Furthermore, the variation of the albumin exchange concentration reveals a stronger dependence of the kinetic for the weakly interacting substrate with higher rates at higher albumin concentrations.  相似文献   

20.
Monte Carlo study of surfactant adsorption on heterogeneous solid surfaces   总被引:1,自引:0,他引:1  
The equilibrium between free surfactant molecules in aqueous solution and adsorbed layers on structured solid surfaces is investigated by lattice Monte Carlo simulation. The solid surfaces are composed of hydrophilic and hydrophobic surface regions. The structures of the surfactant adsorbate above isolated surface domains and domains arranged in a checkerboard-like pattern are characterized. At the domain boundary, the adsorption layers display a different behavior for hydrophilic and hydrophobic surface domains. For the checkerboard-like surfaces, additional adsorption takes place at the boundaries between surface domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号