首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on an amperometric sensor for ascorbic acid (AA) that is based on highly dense gold-silver nanotubes in a chitosan film on a glassy carbon electrode. The nanotubes were synthesized by a poly(vinyl pyrrolidone)-mediated polyol method employing a replacement reaction with silver nanowires as templates, and were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Under the optimal conditions, the sensor exhibits good electrocatalytic activity towards the oxidation of AA, and this enables the determination of AA in the 5 μM to 2 mM concentration range, with a detection limit at 2 μM (at an S/N of 3). The response time is 2 s. The sensor displays good reproducibility, selectivity, sensitivity, and long-term stability.
Figure
In this paper, an amperometric electrochemical sensor for detection of ascorbic acid was fabricated based on highly dense gold-silver nanotubes and chitosan film. The biosensor showed good reproducibility, anti-interferant ability, high sensitivity, low detection limit, fast response, and long-term stability.  相似文献   

2.
A glassy carbon electrode (GCE) was modified with the nickel(II)-bis(1,10-phenanthroline) complex and with multi-walled carbon nanotubes (MWCNTs). The nickel complex was electrodeposited on the MWCNTs by cyclic voltammetry. The modified GCE displays excellent electrocatalytic activity to the oxidation of ascorbic acid (AA). The effects of fraction of MWCNTs, film thickness and pH values were optimized. Response to AA is linear in the 10 to 630 μM concentration range, and the detection limit is 4 μM (at a signal-to-noise ratio of 3:1). The modified electrode was applied to determine AA in vitamin C tablets and in spiked fruit juice.
Graphical Abstract
A simple and sensitive ascorbic acid electrochemical sensor was fabricated by electrodepositing of nickel complex onto multi-walled carbon nanotubes/glassy carbon electrode. The sensor has high selectivity, rapid current response, is easy to construct and can be utilized for ascorbic acid determination.  相似文献   

3.
We describe a highly sensitive and selective amperometric sensor for the determination of nitrite. A glassy carbon electrode was modified with a composite made from gold nanoparticles (AuNPs) and sulfonated graphene (SG). The modified electrode displays excellent electrocatalytic activity in terms of nitrite oxidation by giving much higher peak currents (at even lower oxidation overpotential) than those found for the bare electrode, the AuNPs-modified electrode, and the SG-modified electrode. The sensor has a linear response in the 10 μM to 3.96 mM concentration range, a very good detection sensitivity (45.44 μA mM?1), and a lower detection limit of 0.2 μM of nitrite. Most common ions and many environmental organic pollutants do not interfere. The sensor was successfully applied to the determination of nitrite in water samples, and the results were found to be consistent with the values obtained by spectrophotometry.
Figure
A highly sensitive amperometric sensor for nitrite using a glassy carbon electrode modified with gold nanoparticles/sulfonated graphene (AuNPs/SG) composites is presented  相似文献   

4.
We report on an electrode for the amperometric determination of lorazepam. A glassy carbon electrode was coated with a molecular imprint made by electropolymerization of ortho-phenylenediamine and filled with multiwalled carbon nanotubes and gold nanoparticles, which enhances the transmission of electrons. The sensor was studied with respect to its response to hexacyanoferrate (III) as a probe and by electrochemical impedance spectroscopy, cyclic voltammetry and square wave voltammetry. The linear response range to Lorazepam is from 0.5 nM to 1.0 nM and from 1.0 nM to 10.0 nM, with a detection limit of 0.2 nM (at an S/N of 3). The electrode was successfully applied to determine Lorazepam in spiked human serum.
Figure 1
The preparation of schematic of the AuNP/MIP/f?MWCNT/GCE electrode  相似文献   

5.
Films consisting of pristine multi-walled carbon nanotubes (MWCNTs) and nitrogen-doped MWCNTs (N-MWCNTs) were fabricated by means of chemical vapor deposition and chemically decorated with gold nanoparticles (AuNPs). Optical microscopy and image analysis reveal that the deposited AuNPs have diameters of 50–200 nm and 100–400 nm, respectively. The AuNP-modified films of MWCNTs and of N-MWCNTs were initially investigated with respect to their response to the ferro/ferricyanide redox system. The N-MWCNTs/AuNPs exhibit lower detection limit (0.345 μM) for this redox system compared to that of MWCNTs/AuNPs (0.902 μM). This is probably due to the presence of nitrogen that appears to enhance the electrocatalytic activity of MWCNTs. The findings demonstrate that the electrochemical responses of both films are distinctly enhanced upon deposition of AuNPs on their surfaces. The detection limits of MWCNTs/AuNPs and N-MWCNTs/AuNPs systems are lower by about 43 % and 27 %, respectively, compared to films not modified with AuNPs. The electrocatalytic activity of the films towards the oxidation of ascorbic acid (AA), uric acid (UA), and dopamine (DA) was studied. The findings reveal that N-MWCNTs/AuNPs represent a powerful analytical tool that enables simultaneous analysis of AA, UA, and DA in a single experiment.
Figure
Films consisting of pristine and nitrogen-doped multi-walled carbon nanotubes were fabricated, decorated with gold nanoparticles, and their electrocatalytic activity towards oxidation of ascorbic acid, uric acid, and dopamine was investigated. An enhanced electrocatalytic activity was observed on modified nitrogen-doped carbon nanotubes, where all biomolecules can be simultaneously analyzed.  相似文献   

6.
We report on a highly sensitive and selective nonenzymatic glucose sensor based on a glassy carbon electrode modified with a composite prepared from nickel(II) hydroxide nanoplates and carbon nanofibers. The nanocomposite was characterized by scanning electron microscopy and powder X-ray diffraction. Electrodes modified with pure Ni(OH)2 and with the nanocomposite were characterized by electrochemical impedance spectroscopy. Cyclic voltammetric and amperometric methods were used to investigate the catalytic properties of the modified electrodes for glucose electrooxidation in strongly alkaline solution. The sensor exhibits a wide linear range (from 0.001 to 1.2 mM), a low detection limit (0.76 μM), fast response time (< 5 s), high sensitivity (1038.6 μA?·?mM?1?·?cm?2), good reproducibility, and long operational stability. Application of the nonenzymatic sensor for monitoring glucose in real samples was also demonstrated.
Figure
We report on a highly sensitive and selective nonenzymatic glucose sensor based on a glassy carbon electrode modified with a nanocomposite prepared from nickel (II) hydroxide nanoplates and carbon nanofibers. The facile preparation, high electrocatalytic activity, relatively fast response, favorable reproducibility and long-term performance stability demonstrate the potential applications of the sensor.  相似文献   

7.
We describe the modification of a carbon paste electrode (CPE) with multiwalled carbon nanotubes (MWCNT) and an ionic liquid (IL). Electrochemical studies revealed an optimized composition of 60 % graphite, 20 % paraffin, 10 % MWCNT and 10 % IL. In a next step, the optimized CPE was modified with palladium nanoparticles (Pd-NPs) by applying a double-pulse electrochemical technique. The resulting electrode was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. It gives three sharp and well separated oxidation peaks for ascorbic acid (AA), dopamine (DA), and uric acid (UA), with peak separations of 180 and 200 mV for AA-DA and DA-UA, respectively. The sensor enables simultaneous determination of AA, DA and UA with linear responses from 0.6 to 112, 0.1 to 151, and 0.5 to 225 μM, respectively, and with 200, 30 and 150 nM detection limits (at an S/N of 3). The method was successfully applied to the determination of AA, DA, and UA in spiked samples of human serum and urine. Figure
The CPE was modified with multiwalled carbon nanotubes and an ionic liquid. After optimization the electrode was further modified with palladium nanoparticles. The resulting electrode gives three sharp and well separated oxidation peaks for ascorbic acid, dopamine and uric acid  相似文献   

8.
A composite was prepared from copper and graphene oxide (Cu-GO) by in-situ chemical reduction of a mixture containing GO and Cu(II) ions with potassium borohydride. The morphology and structure of the composite were confirmed by various physicochemical techniques. The materials were used in a tyrosinase-based microbiosensor where the enzyme is immobilized in a biocompatible matrix consisting of poly(ortho-phenylene diamine) and Cu-GO. The composite was deposited on the surface of an 8-μm thick carbon fiber microelectrode. The role of each component in the sensing layer was systematically investigated with respect to the analytical performance of the system. In its optimal configuration, the biosensor demonstrated (a) a sensitivity of 6.1?±?3 nA mM-1 dopamine (DA), (b) a linear response to DA (with a Michaelis-Menten constant of 0.29?±?0.03 mM), (c) good selectivity over ascorbic acid and uric acid, and (d) a high blocking capacity (112.2?±?2 mM) for ascorbic acid.
Figure
Poly(o-phenylenediamine) electropolymerized carbon fiber electrode with sensitivity towards dopamine (DA) is 6.1?±?3 nA mM?1 supported by Cu-GO. The linear range for DA is 0.29?±?0.03 mM with 0.033 μM LOD and fast response time of <8 s with ascorbic acid blocking capacity of 112.2?±?2 mM AA. Studies on different ratio of Glu/Tyr revealed that 10:3 gave best overall response.  相似文献   

9.
We report a simple method for the direct and quantitative determination of L-tryptophan (Trp) and L-tyrosine (Tyr) using a glassy carbon electrode (GCE) modified with single-walled carbon nanohorns (SWCNHs). The SWCNH modified GCE exhibits high electrocatalytic activity towards the oxidation of both Trp and Tyr. It shows a linear response to Trp between 0.5 and 50 μM and to Tyr between 2 and 30 μM. The detection limits for Trp and Tyr are 50 nM and 400 nM, respectively. In addition, the modified GCE displays good selectivity and good sensitivity, thus making it suitable for the determination of Trp and Tyr in spiked serum samples.
Figure
The electrochemical sensor based on single-walled carbon nanohorns modified glassy carbon electrode was presented. The fabricated electrochemical sensor exhibits favorable analytical performance for L-tryptophan and L-tyrosine with high sensitivity, low detection limit, and good reproducibility.  相似文献   

10.
A glassy carbon electrode (GCE) was modified with nickel(II) hydroxide nanoparticles and a film of molybdenum sulfide. The nanocomposite was prepared by two-step electrodeposition. Scanning electron microscopy reveals that the nanoparticles are uniformly deposited on the film. Cyclic voltammetry and chronoamperometry indicate that this modified GCE displays a remarkable electrocatalytic activity towards nonenzymatic oxidation of glucose. Response is linear in the 10–1,300 μM concentration range (R 2 ?=?0.9987), the detection limit is very low (5.8 μM), response is rapid (< 2 s), and selectivity over ascorbic acid, dopamine, uric acid, fructose and galactose is very good.
Figure
An efficient nonenzymatic glucose sensor based on Ni(OH)2/MoSx nanocomposite modified glassy carbon electrode has been fabricated via a two-step electrodeposition approach. The resulting nonenzymatic sensor exhibits excellent properties toward glucose detection, such as low detection limit, fast response and noticeable selectivity.  相似文献   

11.
12.
We report on a glassy carbon electrode that was modified with a composite made from graphene oxide (GO) and multiwalled carbon nanotubes (MWCNT) that enables highly sensitive determination of L-tyrosine. The sensor was characterized by transmission electron microscopy and electrochemical impedance spectroscopy, and its electrochemical properties by cyclic voltammetry, chronocoulometry and differential pulse voltammetry. The GO/MWCNT hybrid exhibits strong catalytic activity toward the oxidation of L-tyrosine, with a well defined oxidation peak at 761 mV. The respective current serves as the analytical information and is proportional to the L-tyrosine concentration in two ranges of different slope (0.05 to 1.0 μM and 1.0 to 650.0 μM), with limits of detection and quantification as low as 4.4 nM and 14.7 nM, respectively. The method was successfully applied to the analysis of L-tyrosine in human body fluids. The excellent reproducibility, stability, sensitivity and selectivity are believed to be due to the combination of the electrocatalytic properties of both GO and MWCNT. They are making this hybrid electrode a potentially useful electrochemical sensing platform for bioanalysis.
Figure
A new L-tyrosine electrochemical sensor was fabricated based on graphene oxide and multiwalled carbon nanotube. The prepared sensor exhibits excellent electro-catalysis to the oxidation of L-tyrosine, and can improve determination sensitivity and decrease detection limit. This sensor was successfully applied to detect L-tyrosine in human fluids with satisfactory results.  相似文献   

13.
We have developed a biosensor for highly sensitive and selective determination of the endocrinic disruptor bisphenol A (BPA). It is based on glassy carbon electrode modified with calf thymus DNA and a composited prepared from single walled carbon nanotubes (SWNT) and Nafion. The interaction between BPA and DNA was studied by voltammetry. The binding constant was determined to be 3.55?×?103 M?1, and the binding site has a length of 4.3 base pairs. These electrochemical studies provide further information for a better understanding of the toxicity and carcinogenicity of BPA. Under optimal conditions, the biosensor displays a linear electrochemical response to BPA in the 10 nM to 20 μM concentration range, with a detection limit as low as 5.0 nM (at an S/N of 3). The method was successfully applied to the quantification of BPA in leachates from plastic baby bottles. Recoveries range from 94.0 % to 106.0 % which underpins the excellent performance of this SWNT-based DNA sensor.
Figure
A biosensor based on DNA and single walled carbon nanotubes modified glassy carbon electrode displays a linear electrochemical response to bisphenol A in the 10 nM to 20 μM concentration range, with a detection limit as low as 5.0 nM (at an S/N of 3).  相似文献   

14.
We report on a bienzyme-channeling sensor for sensing glucose without the aid of mediator. It was fabricated by cross-linking horseradish peroxidase (HRP) and glucose oxidase (GOx) on a glassy carbon electrode modified with multiwalled carbon nanotubes (MWNTs). The bienzyme was cross-linked with the MWNTs by glutaraldehyde and bovine serum albumin. The MWNTs were employed to accelerate the electron transfer between immobilized HRP and electrode. Glucose was sensed by amperometric reduction of enzymatically generated H2O2 at an applied voltage of ?50 mV (vs. Ag/AgCl). Factors influencing the preparation and performance of the bienzyme electrode were investigated in detail. The biosensor exhibited a fast and linear response to glucose in the concentration range from 0.4 to 15 mM, with a detection limit of 0.4 mM. The sensor exhibited good selectivity and durability, with a long-term relative standard deviation of <5 %. Analysis of glucose-spiked human serum samples yielded recoveries between 96 and 101 %.
Figure
A novel bienzyme-channeling sensor for glucose sensing has been constructed without the aid of mediator. This biosensor was fabricated by cross-linking horseradish peroxidase (HRP) and glucose oxidase (GOD) onto glass carbon electrode (GCE) modified with multiwall carbon nanotubes (MWNTs) which accelerated the electron transfer between the HRP and electrode.  相似文献   

15.
We have fabricated, in a single step, carbon ceramic electrodes modified with a poly(acridine orange) film containing reduced graphene oxide. They display electrocatalytic activity to ascorbic acid (AA) and uric acid (UA) at pH 4.5. The anodic peak potentials of AA and UA are separated by 276 mV so that they can be well resolved in cyclic voltammetry. UA and AA were simultaneously determined in a mixture at working potentials of 170 and 400 mV, respectively. Under optimized conditions, the calibration curves for AA and UA cover the 0.8–5,000 μM and 0.6–900 μM concentration range, respectively, while detection limits are 0.3 μM and 0.2 μM. The electrode was applied to determine AA and UA in urine samples.
Figure
DPV curves of RGO–PAO/CCE in the phosphate buffer solution (pH 4.5) containing 5.0?×?10?5 mol L?1 AA with different concentration of UA (a?→?f: 0, 1, 3, 5, 7, 9?×?10?6 mol L?1)  相似文献   

16.
An electrode sensitive to uric acid was prepared by electrodeposition of nickel(II) hexacyanoferrate(III) on the surface of a glassy carbon electrode modified with multi-walled carbon nanotubes. The morphology of the material was characterized by scanning electron microscopy and Fourier transform infrared spectrometry. The modified electrode were characterized via cyclic voltammetry and amperometry (i - t). It exhibited efficient electron transfer ability and a strong and fast (< 3?s) response towards uric acid which is linear in the range from 0.1???M to 18???M, with a lower detection limit of 50 nM (at an S/N ratio of 3). In addition, the electrode exhibited good reproducibility and long-term stability.
Figure
A fast and sensitive uric acid electrochemical sensor has been fabricated by electrodepositing nickel hexacyanoferrate nanoparticles onto multi-walled carbon nanotubes/glassy carbon electrode. The sensor had excellent stability, rapid response, ease of construction and utilization for uric acid determination  相似文献   

17.
We have developed a sensor for the square wave anodic stripping voltammetric determination of Pb(II). A glassy carbon electrode was modified with a thin film of an antimony/poly(p-aminobenzene sulfonic acid) composite in air-saturated aqueous solution of pH 2.0. Compared to a conventional antimony film electrode, the new one yields a larger stripping signal for Pb(II). The conditions of polymerization, the concentration of Sb(III), the pH value of the sample solution, the deposition potential and time, frequency, potential amplitude, and step increment potential were optimized. Under the optimum conditions, a linear response was observed for Pb(II) in the range of 0.5 to 150.0 μg?L?1. The detection limit for Pb(II) is 0.1 μg?L?1.
Figure
The surface of a glassy carbon electrode (GCE) was modified by electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and the modified electrode was then prepared by in situ depositing antimony and target metal on the poly(p-ABSA) coated glassy carbon electrode. The antimony/poly(p-ABSA) film electrode displays high electrochemical activity in giving a peak current that is proportional to the concentration of Pb(II) in a certain range.  相似文献   

18.
We report on the voltammetric determination of the flavonoid Baicalein by using a carbon paste electrode that was doped with multi-walled carbon nanotubes. The resulting sensor exhibits excellent redox activity towards Baicalein due to the large surface area and good conductivity of the electrode. Cyclic voltammetry at various scan rates was used to investigate the redox properties of Baicalein. At the optimum conditions, the sensor displays a linear current response to Baicalein in the 0.02–10 μM concentration range, with a limit of detection of 4.2 n M. The method was successfully applied to the determination of Baicalein in spiked human blood serum samples and in a Chinese oral liquid.
Figure
We construct a new voltammetric sensor, based on multi-walled carbon nanotubes (MWCNT) doped Carbon paste electrode(CPE), The proposed electrode can improve the oxidation of Baicalein intensively, which can applied to the quantitative determination of Baicalein with wide linear response and low detection limit.  相似文献   

19.
Spherical Fe3O4 nanoparticles (NPs) were prepared by hydrothermal synthesis and characterized by scanning electron microscopy and X-ray diffraction. A glassy carbon electrode was modified with such NPs to result in a sensor for Pb(II) that is based on the strong inducing adsorption ability of iodide. The electrode gives a pair of well-defined redox peaks for Pb(II) in pH 5.0 buffer containing 10 mM concentrations of potassium iodide, with anodic and cathodic peak potentials at ?487 mV and ?622 mV (vs. Ag/AgCl), respectively. The amperometric response to Pb(II) is linear in the range from 0.10 to 44 nM, and the detection limit is 40 pM at an SNR of 3. The sensor exhibits high selectivity and reproducibility.
Figure
An electrochemical sensor for Pb2+ was fabricated based on the glassy carbon electrode modified with Fe3O4 NPs and the strong inducing adsorption ability of I?. The sensor had excellent stability, high sensitivity, ease of construction and utilization for Pb(II) determination  相似文献   

20.
This paper describes the development of a simple and efficient nanostructured platform based on multi-walled carbon nanotubes (MWCNT) functionalized with an in situ generated vanillic acid (VA) polymer. It was used as an analytical sensor for the simultaneous determination of ascorbic acid (AA), dopamine (DA), and uric acid (UA). The electropolymerization process of VA, performed on MWCNT-modified glassy carbon electrode, produces three redox systems based on quinone/hydroquinone functionality, as observed by cyclic voltammetry. The amperometric sensor has as figures of merit for the simultaneous determination of AA, DA, and UA the following values: for AA, a linear range of 5–120 μM and detection limit of 3.5 μM; for DA, a linear range of 5–120 μM and detection limit of 4.5 μM; and for UA, a linear range of 5–120 μM and a detection limit of 1.5 μM. From the obtained performance, the development of the platform based on MWCNT/poly-VA is justified for the simultaneous determination of AA, DA, and UA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号