首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A liquid chromatographic method with comfirmation by capillary electrophoresis was used to determine 12 sulfonylurea herbicides in agricultural water. Analysis of 3 different water matrixes fortified at 2 levels gave good recoveries with adequate sensitivity at the 0.1 ppb level. A portion of the water was acidified with acetic acid and loaded onto an RP-102 solid-phase extraction (SPE) cartridge, and the extract was cleaned up on an alumina SPE cartridge. Extracts were desalted with an RP-102 SPE cartridge before instrumentation. Samples needing chemical filtration, such as pond water, required additional cleanup with a SAX SPE cartridge before the alumina cleanup step. Data were compiled for both determinative techniques and evaluated.  相似文献   

2.
A magnetic material based on N-methylimidazolium ionic liquid and Fe(3)O(4) magnetic nanoparticles incorporated in a silica matrix has been used to extract and preconcentrate sulfonylurea herbicides, such as thifensulfuron methyl (TSM), metsulfuron methyl (MSM), triasulfuron (TS), tribenuron methyl (TBM) and primisulfuron methyl (PSM) from polluted water samples, prior to their analysis by capillary liquid chromatography with a diode array detector (DAD). Under the optimum conditions, this method allows the determination of TSM, MSM, TS, TBM and PSM in a linear range between 5 and 100 ng mL(-1), with relative standard deviation values lower than 5.3% (n = 10), in all cases. Detection limits ranging between 1.13 and 2.95 ng mL(-1) were achieved. The usefulness of the proposed method was demonstrated by the analysis of river water samples, obtaining recoveries higher than 91%.  相似文献   

3.
4.
Summary Sulfonylurea herbicides in soil extracts were concentrated using off-line solid-phase extraction (SPE), and determined by capillary zone electrophoresis (CZE) and UV detection. The method involves extraction of soils with 0.1 M NaHCO3 solution and subsequent preconcentration by using C18 cartridges prior to separation of the pesticide using CZE. The results show that a C18 cartridge is suitable for the purification of sulfonylurea herbicides in soil extracts with the recoveries ranging from 65–103%. The separation conditions affecting the resolution and detection sensitivity was systematically investigated. The sulfonylureas were resolved well using 30 mM sodium acetate (NaAc)/acetic acid (HAc)+10% acetonitrile (ACN) buffer at pH 4.80. The calibration plots for the test solutes in the concentration of 0.2–50 mg L−1 were linear with detection limits in the range of 0.05–0.10 mgL−1. The proposed method has been successfully demonstrated for the determination of sulfonylurea herbicides in soil samples.  相似文献   

5.
A method based on micro-porous membrane liquid-liquid extraction (MMLLE) enrichment and nonaqueous capillary electrophoresis (CE) separation, was established for the analysis of sulfonylurea herbicides in water samples. After MMLLE, the analyte trapped in the chloroform was treated mildly with nitrogen flow to dryness and then dissolved in 200 μl of 4 mM Tris methanol solution for CE analysis. Five sulfonylurea herbicides were separated by nonaqueous CE with Tris/acetate of methanol solution as the run buffer. MMLLE related parameters such as organic solvent used as acceptor, sample flow rate, sample pH, enrichment time, and salt effect were investigated with tribenuron methyl (TBM) as a model compound. Results showed that with a sample flow rate of 3.0 ml min−1 and an enrichment time of 20 min, the proposed method has good linear relationship over the scope of 1-15 ng ml−1 with related coefficient of R2=0.9911, and a detection limit of 0.4 ng ml−1. This method was applied to determine TBM in realworld water samples with recoveries over the range of 89-97%.  相似文献   

6.
Twelve sulfonylurea herbicides (bensulfuron-methyl, sulfometuron-methyl, ethametsulfuron-methyl, triasulfuron, tribenuron-methyl, nicosulfuron, chlorimuron-ethyl, thifensulfuron-methyl, primisulfuron-methyl, metsulfuron-methyl, chlorsulfuron, and amidosulfuron) were separated by free zone capillary electrophoresis with migration times less than 20 min. The additional simultaneous determination of the 2,3-dihydro-3-oxobenzisosulfonazole (saccharin) degradation product was possible after application of a temperature and voltage gradient. Detector responses (absorbances) at 239 and 220 nm were linear between 0.1 and 10.0 g/ml. After extraction with acetonitrile, recoveries for the same concentration range from two different sediments were higher than 90% with variation coefficients lower than 16%. Dissociation constants of the sulfonylurea herbicides were determined.  相似文献   

7.
A method has been developed for confirmation and quantitation of ten sulfonylurea herbicides (nicosufuron, thifensulfuron-methyl, metsulfuron-methyl, sulfometuron-methyl, chlorsulfuron, ethametsulfuron-methyl, tribenuron, bensulfuron-methyl, pyrazosulfuron-ethyl and chlorimuron-ethyl) in water samples. Herbicides were extracted from water by off-line solid-phase extraction (SPE). Different types of absorbents were evaluated: silica-based ODS-C18 and two polymeric sorbents, Cleanert HXN and Oasis HLB. Analyte determination and quantitation was performed by liquid chromatography with electrospray mass spectrometry (LC-ESI-MS) instrumentation, equipped with ion trap mass filter. Confirmatory analysis was carried out by LC/MS/MS. MS data acquisition was performed by a single or two-ion extracted ion monitoring program. The ten herbicides were measured in fortified tap water. Average recoveries of the nine analytes (except for tribenuron) from water samples were in the range of 77–109%, and the RSD ranged from 0.3 to 14.5%. The limit of detections (LODs) varied from 6 to 34.8 ng/L.  相似文献   

8.
A fast sample preparation method for the trace determination of some exploxives, by-products and degradation compounds in water by capillary gas chromatography is described. It is based on multiple extractions of the water sample with sub-milliliter amounts of solvent and subsequent concentration of the unified extracts by reducing its volume to a few microliters according to Dünges. The most suitable solvent was methyl-tert.-butylether. With electron caption detection and an aqueous sample volume of 25 to 100 ml, the determination level is in the pg/ml range. Received: 3 May 1996 / Revised: 28 June 1996 / Accepted: 5 July 1996  相似文献   

9.
李娜  李辉  邵辉  刘磊  张玉婷  郭永泽 《色谱》2011,29(4):346-352
建立了人参中15种磺酰脲类除草剂残留量的超高效液相色谱-串联质谱(UPLC-MS/MS)检测方法。样品中残留的农药经乙腈提取、石墨化炭黑(ENVI-Carbon)固相萃取柱净化后,使用含1%(v/v)甲酸的甲醇-二氯甲烷(20:80, v/v)洗脱,UPLC分离,最后采用电喷雾串联质谱在正离子多反应监测(MRM)扫描模式下进行测定。15种农药在2~100 μg/L的质量浓度范围内线性关系良好,相关系数在0.996和0.999之间。对人参中15种农药在5、25和50 μg/kg 3个添加水平下的回收率进行了测定,其平均回收率在84.9%和104.3%之间,相对标准偏差在2.4%和11.9%之间。各种农药的定量限均为5 μg/kg。该方法操作简便,净化效果好,灵敏度、准确度和精密度均符合多残留检测技术的要求,可为中药材中磺酰脲类除草剂污染状况调查提供检测方法支持。  相似文献   

10.
分子印迹技术在毛细管电色谱中的应用   总被引:2,自引:0,他引:2  
分子印迹技术是制备具有分子识别功能聚合物,即分子印迹聚合物(MIPs)的一种新技术;毛细管电色谱(CEC)是一个具有发展前途的色谱新技术。将分子印迹技术和毛细管电色谱两种新技术相结合,优势互补,具有极大的发展潜力。本文对分子印迹技术在毛细管电色谱中的应用,以及各类MIPs-CEC毛细管柱的制备方法进行了较为全面的综述,引用文献52篇。  相似文献   

11.
Summary Sample preparation for determination of sulfonylurea herbicides in aqueous samples is investigated. The technique studied utilizes extraction and back extraction in an automated flow system and is coupled on-line to a liquid chromatographic system. The extraction unit consists of an immobilized liquid membrane, separating two aqueous phases. From the acidified donor phase the analytes are extracted into the organic solvent of the membrane. After traversing the membrane they are back extracted into an alkaline/neutral aqueous acceptor phase. They are trapped in the acceptor by dissociation, making them insoluble in the membrane.Studies of the sample preparation system concern factors like channel length of separators, distribution coefficients of analytes and use of a precolumn instead of loop for chromatographic injections. Effects of the internal diameter of the analytical column as well as the detection of the sulfonylurcas are investigated.  相似文献   

12.
Micellar electrokinetic capillary chromatography (MEKC) with diode array detection was used for the separation of 13 compounds (eight herbicides widely used in agriculture: metribuzin, lenacil, ethofumesate, atrazine, terbutryn, isoproturon, chlorotoluron and linuron, and five of their principal degradation products; namely, deethylatrazine, 2-hydroxyatrazine, deethyl-2-hydroxyatrazine, deisopropylatrazine and 3-chloro-4-methylphenylurea). Peak separation for the 13 analytes was not successful when a single surfactant system was employed, neither sodium dodecyl sulfate (SDS) nor dioctyl sulfosuccinate (DOSS) sodium salt. However, a mixture of these herbicides was successfully separated using a mixed micellar system involving SDS–DOSS in less than 14 min. An application study of an on-line concentration technique for MEKC was carried out to enhance sensitivity. The optimized on-line stacking procedure consisted simply of the addition of 50 mM of sodium chloride to the injection sample, the stacking effect being more intensive as analyte polarity increased. When this stacking procedure was combined with an off-line sample preconcentration step, based on solid-phase extraction, analytes could be detected in the ppb range. The whole method was applied to ultra-high-quality and natural waters. Linear relationships between the analytical signal and the initial analyte concentration were found to be independent of the type of water, except for the more polar analytes for which small differences were observed.  相似文献   

13.
A simple, rapid and low cost method for determination of phthalic acid esters (PAEs) including Dimethyl phthalate (DMP), Diethyl phthalate (DEP), Di-n-butyl phthalate (DBP) and Butylbenzyl phthalate (BBP) in water samples was investigated. The method is based on the extraction of PAEs with coacervate made up of decanoic acid reverse micelles and the subsequent determination by HPLC-UV. Effect of parameters such as concentration of tetrahydrofuran (THF) (2?C40% v/v) and decanoic acid (20?C400 mg in 40 ml total volume), ionic strength (0.0?C0.1 M NaCl), pH (1?C4) and stirring time (2?C60 min) on recoveries (Rs) and enrichment factors (EFs) were investigated and optimized. The optimum condition for extraction was the stirring of 36 ml of water sample with 4 ml of THF containing 100 mg of decanoic acid for 10 min and its centrifugation (10 min, 3500 rpm). Recoveries and enrichment factors of PAEs mainly depended on the amount of decanoic acid and THF making up the coacervate and were not affected by ionic strength of the sample solution (up to 0.1 M of NaCl), pH (1?C4), and stirring time (2?C60 min). Recoveries, enrichment factors, LODs and relative standard deviations (RSD%) for PAEs were between 87?C94%, 187?C202, 0.22?C0.30 ??g l?1 and 2?C5%, respectively. This method was applied to determine PAEs in tap water, river water, and sea water samples. No PAEs were found in tap water. The amount of DMP and DEP in the Babolrood River was 0.87 and 0.67 ??g l?1, while in the Caspian Sea was 0.49 and 0.52 ??g l?1, respectively.  相似文献   

14.
A rapid and sensitive method for determining phenylurea herbicides in environmental aqueous samples in the presence of their anilines is described. The water sample is preconcentrated by passage at a flow-rate of ca. 150 ml/min through a 250-mg graphitized carbon black (Carbopack B) cartridge. After washing with 0.6 ml of methanol, the Carbopack B trap is connected with a cartridge containing a strong cation exchanger. Organics trapped by the Carbopack cartridge are eluted by passage of 6 ml of methylene chloride-methanol (95:5, v/v). Anilines and other basic compounds are quantitatively subtracted from the solvent system while flowing through the cation-exchange cartridge. After evaporation and redissolution, the sample is subjected to reversed-phase gradient elution high-performance liquid chromatography with UV detection at 250 nm. Recoveries of phenylureas added to water at levels between 30 and 3000 ng/l were higher than 92%. The limit of detection was about 1 ng/l, for a 2-1 sample. With respect to an octadecyl (C18)-bonded silica cartridge, the Carbopack B cartridge had a far better extraction efficiency for polar phenylureas.  相似文献   

15.
Supercritical fluid chromatography and supercritical fluid extraction have been coupled to provide on-line evaluation of a dynamic extraction procedure. The simultaneous removal and analysis of representative sulfonylureas, their precursors and metabolites from complex matrices was accomplished with this configuration. The matrices examined include soil, plant materials and a cell culture medium. The simplicity and current applicability of this design to the agricultural products industry is demonstrated.  相似文献   

16.
王家斌  吴芳玲  赵琦 《色谱》2015,33(8):849-855
采用C18毛细管整体柱作为固相微萃取整体柱,构建在线固相微萃取-高效液相色谱联用系统,同步富集检测环境水样中的5种苯氧羧酸类除草剂。详细考察了联用系统运行条件对富集检测的影响。联用系统运行最佳参数为:固相微萃取整体柱长度20 cm,进样流速0.04 mL/min,进样13 min,洗脱流速0.02 mL/min,洗脱5 min。在最佳条件下,5种苯氧羧酸类除草剂的检出限为:9 μg/L (苯氧丙酸)、4 μg/L (2-(2-氯)-苯氧丙酸)、4 μg/L (2-(3-氯)-苯氧丙酸)、5 μg/L (2,4-二氯苯氧乙酸)、5 μg/L (2-(2,4-二氯苯氧基)丙酸)。与HPLC系统直接进样对比,联用系统对5种检测对象表现出优良的富集能力。5种苯氧羧酸类除草剂的回收率在79.0%~98.0%之间(RSD≤3.9%)。该方法成功应用于水样中5种苯氧羧酸类除草剂的检测,结果令人满意。  相似文献   

17.
李迪  张瑞琪  王铁峰  苏萍  杨屹 《色谱》2019,37(3):259-264
采用溶胶-凝胶法制备表面修饰了十八烷基三甲基溴化铵的磁性粒子作为萃取剂,研制了一种在线磁性固相萃取(on-line MSPE)装置,建立了on-line MSPE与高效液相色谱联用测定水样中两种磺酰脲类农药(氯磺隆、苄嘧磺隆)的方法。实验优化了在线磁性固相萃取条件并进行方法学考察,证明该方法具有良好的线性关系(两种目标物的线性相关系数均≥ 0.9997)和较低的检出限(两种目标物的检出限分别为0.32和1.12 μg/L)。将此法用于3种环境水样中两种磺酰脲类农药的检测,水样中均检出氯磺隆,均未检出苄嘧磺隆。两种目标物加标回收率为70.0%~113.4%。该方法高效、简便,在分离富集环境水样中磺酰脲类农药方面有一定的应用前景。  相似文献   

18.
A fast and novel analytical method was developed for the determination of trace levels of sulfonylurea herbicides in water and soil samples. Graphene was used as a sorbent for extraction, and ultra high performance liquid chromatography with tandem mass spectrometry was used for quantification. Five sulfonylurea herbicides were preconcentrated from water samples using a graphene‐loaded packed cartridge, while extraction from soil samples was performed in a single step using graphene‐supported matrix solid‐phase dispersion. Under the optimized conditions, the calibration plots were linear in the range between 5 and 1000 ng/L for water samples, and between 1 and 200 ng/g for soil samples. All correlation coefficients (R) were >0.99. The limits of detection for water and soil samples were 0.28–0.53 ng/L and 0.08–0.26 ng/g, respectively. This method was successfully applied to the analysis of spiked samples of environmental water and soil, with recoveries ranging from 84.2–109.3 and 86.12–103.2%, respectively, all with relative standard deviations of <10%.  相似文献   

19.
A sensitive and reliable method using capillary zone electrophoresis with UV-diode array detection has been developed and validated for trace determination of residues of sulfonylurea herbicides in environmental water samples and grapes from different origins. The analytes included are triasulfuron, rimsulfuron, flazasulfuron, metsulfuron-methyl, and chlorsulfuron. Optimum separation has been achieved on a 48.5-cm × 50-μm (effective length 40 cm) bubble cell capillary using 90 mM ammonium acetate buffer, pH 4.8, by applying a voltage of 20 kV at 25 °C and using p-aminobenzoic acid as the internal standard. In order to increase sensitivity, large volume sample stacking with polarity switching has been applied as on-line preconcentration methodology. For water samples, a solid-phase extraction (SPE) procedure based on the use of Oasis HLB cartridges was applied for off-line preconcentration and cleanup. For grape samples, the SPE procedure was achieved with C18 sorbent, after extraction of the compounds with MeOH:H2O (1:1) by sonication. The limits of detection for the studied compounds were between 0.04 and 0.12 μg/L for water samples and 0.97 and 8.30 μg/kg in the case of grape samples, lower in all cases than the maximum residue limits permitted by the EU for this kind of food. The developed methodology has demonstrated its suitability for the monitoring of these residues in environmental water and grape samples with high sensitivity, precision, and satisfactory recoveries.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号