首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
张德善  佟振合  吴骊珠 《化学进展》2022,34(7):1590-1599
光合作用将太阳能储存在化学反应中,是绿色高效的能量转换途径。模拟自然光合作用系统活性中心的结构和功能,实现小分子物质(H2O、CO2、N2等)中惰性化学键的活化转化,对于解决能源和环境等问题具有重要意义。本文综述了人工光合作用在水分解、二氧化碳及氮气还原领域取得的重要进展,分析了相关光化学转换体系的设计思路和工作原理,并对人工光合作用面临的挑战和未来发展方向进行讨论。  相似文献   

2.
本文对几种人工光合作用反应中心系统,做一个简单的综述,其中包括叶绿素和细菌叶绿素二聚体,卟啉二聚体,卟啉-苯醌共价键络合物以及其他合成中心。  相似文献   

3.
近年生物光合作用水裂解催化中心的结构研究取得重要进展,为人工模拟光合作用水裂解研究提供了理想的蓝图。人工模拟生物水裂解催化中心、制备高效和廉价的人工水裂解催化剂、获得电能和(或)氢能被认为是解决人类所面临的能源危机和环境污染问题的理想途径。这方面的研究具有重要科学意义和应用价值,同时也是广受关注的重大科学前沿。本文对最近生物水裂解催化中心和其人工模拟研究进展进行了评述。  相似文献   

4.
基于无机材料-微生物复合半人工光合系统是在自然光合作用和人工光合作用研究进展到一定阶段,为克服各自的缺陷,实现微生物与无机材料优势互补而发展出来的一种研究体系。该体系的主要优势是将微生物的催化选择性与无机材料的光响应性结合起来,旨在解决人工光合作用体系催化选择性差的问题。目前,可以通过光催化剂-微生物复合和电极-微生物复合来实现基于无机材料-微生物复合的半人工光合作用。本文围绕基于无机材料-微生物复合的半人工光合作用,依次从半人工水氧化、半人工光合还原和材料-微生物界面等方面做了系统的阐述,重点介绍基于电极-微生物复合的半人工光合体系研究进展,对基于无机材料-微生物复合的半人工光合作用的领域现状做了分析和总结,并且对该领域的前景进行了展望。  相似文献   

5.
氢气的燃烧热值高(285.8 kJ/mol),且燃烧时只生成水不生成任何污染物,被认为是理想的能源载体。模拟自然界光合作用系统活性中心的结构和功能,利用光催化分解水制取氢气是将太阳能转换为化学能的重要方式,也是人工光合成的重要内容。本文对近年来国内外人工光合成制氢领域取得的重要进展进行了总结,并对人工光合成制氢的发展趋势和前景进行了展望。  相似文献   

6.
胡安东  周顺桂  叶捷 《化学进展》2021,33(11):2103-2115
半人工光合系统通过利用人工光合系统与自然光合系统关键功能组分的协同效应以实现太阳能-化学能的转化.生物杂化体介导的半人工光合系统(biohybrid mediated semi-artificial photosynthetic system,BMSAPS)创新性地耦合了光敏剂优异的光捕获特性及生物催化剂高效的催化能力...  相似文献   

7.
设计、合成了一系列4,5,9,10-四芳基喹嗪并喹啉衍生物,并在均相光解水制氢体系中研究其光敏活性。研究结果表明,二氯化钯是其有效制氢的催化剂,还原淬灭是光敏剂的主要淬灭途径。通过光电物理化学性能研究表明,这类喹嗪并喹啉衍生物的取代基效应明显,而甲氧基有利于提高其荧光量子效率,最高可达0.48;同时供电子甲氧基取代基能明显提高光敏剂制氢性能,光敏剂3e的制氢总转换数(TON)可达341。  相似文献   

8.
人工光合作用反应中的研究进展   总被引:1,自引:0,他引:1  
梁晓光 《有机化学》1986,6(2):98-107
本文对几种人工光合作用反应中心系统,做一个简单的综述,其中包括叶绿素和细菌叶绿素二聚体,卟啉二聚体;卟啉-苯醌共价键络合物以及其他合成中心.  相似文献   

9.
作为人体内重要的抗氧化酶,谷胱甘肽过氧化物酶受到人们越来越多的关注.为探索其催化机制,并开发极具潜力的抗氧化药物,国际上广泛开展了人工模拟谷胱甘肽过氧化物酶的研究工作.基于化学、生物学、超分子科学以及纳米科学及其深度交叉,人们研究构建了从小分子到大分子,再到纳米等不同结构的谷胱甘肽过氧化物酶模拟物.本文主要综述本研究组和其他研究组基于以大分子为骨架设计人工谷胱甘肽过氧化物酶的研究思路和策略.研究体系包括合成的大分子硒酶模型、自组装大分子硒酶模型和生物大分子硒酶模型等.  相似文献   

10.
通过半导体光催化分解水反应实现太阳能向清洁能源氢能的转化,是解决人类面临的能源和环境危机的终极途径之一。该过程的关键是开发宽光谱响应、高效的光催化剂,到目前为止,调控能带结构、制备活性晶面、构建异质结构、负载助催化剂等诸多方法被广泛应用于扩展半导体材料的吸光范围和提高其光催化活性。本文介绍了半导体光解水制氢的基本原理,并综述了该领域的研究进展,重点关注提高半导体光催化活性的方法及其所面临的挑战和瓶颈问题,并结合相关课题组的研究工作提出可能的应对策略。  相似文献   

11.
The development of green and renewable energy sources is in high demand due to energy shortage and productivity development. Artificial photosynthesis(AP) is one of the most effective ways to address the energy shortage and the greenhouse effect by converting solar energy into hydrogen and other carbon-based high value-added products through the understanding of the mechanism, structural analysis, and functional simulation of natural photosynthesis. In this review, the development of AP from natural catalysts to artificial catalysts is described, and the processes of oxygen production, hydrogen production, and carbon fixation are sorted out to understand the properties and correlations of the core functional components in natural photosynthesis, to provide a better rational design and optimization for further development of advanced heterogeneous materials.  相似文献   

12.
The synthesis and detailed characterization of a new Ru polypyridine complex containing a heteroditopic bridging ligand with previously unexplored metal-metal distances is presented. Due to the twisted geometry of the novel ligand, the resultant division of the ligand in two distinct subunits leads to steady state as well as excited state properties of the corresponding mononuclear Ru(II) polypyridine complex resembling those of prototype [Ru(bpy)3]2+ (bpy=2,2'-bipyridine). The localization of the initially optically excited and the nature of the long-lived excited states on the Ru-facing ligand spheres is evaluated by resonance Raman and fs-TA spectroscopy, respectively, and supported by DFT and TDDFT calculations. Coordination of a second metal (Zn or Rh) to the available bis-pyrimidyl-like coordination sphere strongly influences the frontier orbitals, apparent by, for example, luminescence quenching. Thus, the new bridging ligand motif offers electronic properties, which can be adjusted by the nature of the second metal center. Using the heterodinuclear Ru−Rh complex, visible light-driven reduction of NAD+ to NADH was achieved, highlighting the potential of this system for photocatalytic applications.  相似文献   

13.
Artificial photosynthesis in nanobiocatalytic assemblies aims to reconstruct man‐made photosensitizers, electron mediators, electron donors, and redox enzymes for solar synthesis of valuable chemicals through photochemical cofactor regeneration. Herein, we report, for the first time, on nanobiocatalytic artificial photosynthesis in near‐infrared (NIR) light, which constitutes over 46% of the solar energy. For NIR‐light‐driven photoenzymatic synthesis, we synthesized silica‐coated upconversion nanoparticles, Si‐NaYF4:Yb,Er and Si‐NaYF4:Yb,Tm, for efficient photon‐conversion through Förster resonance energy transfer (FRET) with rose bengal (RB), a photosensitizer. We observed NIR‐induced electron transfer by using linear sweep voltammetric analysis; this indicates that photoexcited electrons of RB/Si‐NaYF4:Yb,Er are transferred to NAD+ through a Rh‐based electron mediator. RB/Si‐NaYF4:Yb,Er nanoparticles, which exhibit higher FRET efficiency due to more spectral overlap than RB/Si‐NaYF4:Yb,Tm, perform much better in the photoenzymatic conversion.  相似文献   

14.
A strategy to covalently connect crystalline covalent organic frameworks (COFs) with semiconductors to create stable organic–inorganic Z‐scheme heterojunctions for artificial photosynthesis is presented. A series of COF–semiconductor Z‐scheme photocatalysts combining water‐oxidation semiconductors (TiO2, Bi2WO6, and α‐Fe2O3) with CO2 reduction COFs (COF‐316/318) was synthesized and exhibited high photocatalytic CO2‐to‐CO conversion efficiencies (up to 69.67 μmol g?1 h?1), with H2O as the electron donor in the gas–solid CO2 reduction, without additional photosensitizers and sacrificial agents. This is the first report of covalently bonded COF/inorganic‐semiconductor systems utilizing the Z‐scheme applied for artificial photosynthesis. Experiments and calculations confirmed efficient semiconductor‐to‐COF electron transfer by covalent coupling, resulting in electron accumulation in the cyano/pyridine moieties of the COF for CO2 reduction and holes in the semiconductor for H2O oxidation, thus mimicking natural photosynthesis.  相似文献   

15.
Inspired by the natural [NiFe]-H2ase, we designed mimic 1 , (dppe)Ni(μ-pdt)(μ-Cl)Ru(CO)2Cl to realize effective H2 evolution under photocatalytic conditions. However, a new species 2 was captured in the course of photo-, electro-, and chemo- one-electron reduction. Experimental studies of in situ IR spectroscopy, EPR, NMR, X-ray absorption spectroscopy, and DFT calculations corroborated a dimeric structure of 2 as a closed-shell, symmetric structure with a RuI center. The isolated dimer 2 showed the real catalytic role in photocatalysis with a benchmark turnover frequency (TOF) of 1936 h−1 for H2 evolution, while mimic 1 worked as a pre-catalyst and evolved H2 only after being reduced to 2 . The remarkably catalytic activity and unique dimer structure of 2 operated in photocatalysis unveiled a broad research prospect in hydrogenases mimics for advanced H2 evolution.  相似文献   

16.
利用半导体量子点为光催化剂通过人工光合成的方式把H2O或CO2转化为H2或CO从而获得氢气或其他太阳能燃料,被认为是解决能源和环境危机的有效途径.量子点由于其独特的光物理和光化学性质(如优异的吸光能力、可调的能带结构、多激子生成、表面丰富的活性位点等)在人工光合成化学转换领域受到了广泛的关注.本文总结了近年来作者团队在...  相似文献   

17.
In green plants, solar‐energy utilization is accomplished through a cascade of photoinduced electron transfer, which remains a target model for realizing artificial photosynthesis. We introduce the concept of biocatalyzed artificial photosynthesis through coupling redox biocatalysis with photocatalysis to mimic natural photosynthesis based on visible‐light‐driven regeneration of enzyme cofactors. Key design principles for reaction components, such as electron donors, photosensitizers, and electron mediators, are described for artificial photosynthesis involving biocatalytic assemblies. Recent research outcomes that serve as a proof of the concept are summarized and current issues are discussed to provide a future perspective.  相似文献   

18.
We report on the capability of polydopamine (PDA), a mimic of mussel adhesion proteins, as an electron gate as well as a versatile adhesive for mimicking natural photosynthesis. This work demonstrates that PDA accelerates the rate of photoinduced electron transfer from light‐harvesting molecules through two‐electron and two‐proton redox‐coupling mechanism. The introduction of PDA as a charge separator significantly increased the efficiency of photochemical water oxidation. Furthermore, simple incorporation of PDA ad‐layer on the surface of conducting materials, such as carbon nanotubes, facilitated fast charge separation and oxygen evolution through the synergistic effect of PDA‐mediated proton‐coupled electron transfer and the high conductivity of the substrate. Our work shows that PDA is an excellent electron acceptor as well as a versatile adhesive; thus, PDA constitutes a new electron gate for harvesting photoinduced electrons and designing artificial photosynthetic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号