首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
JU  Xue-Hai XIAO  He-Ming 《中国化学》2002,20(3):227-234
Ab initio self-consistent field(SCF) and Mφller-Plesset correlation correction methods employing 6-31G^** basis set have been applied to the optimizations of nitroamine dimers.The binding energies have been corrected for the basis set superposition error (BSSE) and the zero-point energy.Theree optimized dimers have been obtained.The BSSE corrected binding energy of the most stable dimer is predicted to be -31.85kJ/mol at the MP4/6-31G^**//MP2/6-31G^** level.The energy barriers of the Walden conversion for -NH2 group are 19.7kJ/mol and 18.3kJ/mol for monomer and the most stable dimer,respectively.The molecular interaction makes the internal rotation around N1-N2 even more difficult.The thermodynamic properties of nitroamine and its dimers at different temperatures have been calculated on the basis of vibrational analyses.The change of the Gibbs free energy for the aggregation from monomer to the most stable dimer at standard pressure and 298.2 K is predicted to be 14.05kJ/mol.  相似文献   

2.
Three stable dimers of methyl nitrate have been obtained and their geometries have been fully optimized at the HF/6‐31G,. level. Binding energies have been calculated with correction for the basis set superposition error (BSSE) and zero point energy (ZPE). The cyclic overlap‐type structure, the binding energy of which is 11.97 kJ/mol at the MP4SDTQ/6‐31G. / HF/6‐31G. level, is the most stable. No intermolecular hydrogen bond was found, and the charge transfer between two subsystems is minute. The thermodynamic properties of methyl nitrate and its dimers have been calculated based on the vibrational analysis and statistical thermodynamics.  相似文献   

3.
Energetic materials are aggregative and mixed systems. The intermolecular interactions play significantroles in the physical,chemical and explosive property. The study on intermolecular interactions of energetic materials has attracted wide attention. The organic azides are an important category of energetic materials and widely used in many fields. Ethyl azide is the simple model having the explosive property for the organic azides energetic compound. Ethyl azide monomer(Ⅰ)and all its possible stable clusters(Ⅱ,Ⅲ and Ⅳ)are fully optimized by ab initio method at the HF/6-311++G** level. Vibrational frequencies calculated to ascertain each structure are characterized to be the stable structure(no imaginary frequencies). The proportions of correlated interaction energies to their total interaction energies ΔE(MP2)are 65.14%,63.76% and 65.62% for Ⅱ,Ⅲ and Ⅳ respectively. In addition,the basis set superposition error(BSSE)correction energies are 7.82,7.61 and 4.40 kJ/mol for Ⅱ,Ⅲ and Ⅳ respectively. The zero point energy (ZPE) corrections for the interaction energies are much less than those of MP2 electron correlation and BSSE correction energies. After MP2 electron correlation correction,BSSE and ZPE correction,the greatest corrected intermolecular interaction of the dimers is -10.45 kJ/mol. The charge redistribution mainly occurs on the adjacent N?H atoms between submolecules. The charge transfer between two subsystems is very small. Natural bond orbital(NBO)analysis is performed to reveal the origin of the interaction. Based on the statistical thermodynamic method,the standard thermodynamic functions,heat capacities(C0p),entropies(S0m)and enthalpies(H0m)and the changes of thermodynamic properties from the monomer to dimer with the temperatures ranging from 200. 00 K to 800. 00 K have been obtained.  相似文献   

4.
pi-pi Interaction in pyridine dimer and trimer has been investigated in different geometries and orientations at the ab initio (HF, MP2) and DFT (B3LYP) levels of theory using various basis sets (6-31G, 6-31G, 6-311++G) and corrected for basis set superposition error (BSSE). While the HF and DFT calculations show the pyridine dimer and the trimer to be unstable with respect to the monomer, the MP2 calculations show them to be clearly stable, thus emphasizing the need to include electron correlation while determining stacking interaction in such systems. The calculated MP2/6-311++G binding energy (100% BSSE corrected) of the parallel-sandwich, antiparallel-sandwich, parallel-displaced, antiparallel-displaced, T-up and T-down geometries for pyridine dimer are 1.53, 3.05, 2.39, 3.97, 1.91, 1.47 kcal/mol, respectively. The results show the antiparallel-displaced geometry to be the most stable. The binding energies for the trimer in parallel-sandwich, antiparallel-sandwich, and antiparallel-displaced geometry are found to be 3.18, 6.14, and 8.04 kcal/mol, respectively.  相似文献   

5.
居学海  肖鹤鸣  夏其英 《中国化学》2003,21(11):1440-1446
Introduction  ApplicationsofabinitiocalculationstointermolecularinteractionsincludingeitherweakvanderWaalsorstrongerhydrogenbondinghavedrawnmuchattentioninthepastdecadesbecausetheyareimportantinawiderangeofphysical,chemicalandbiologicalfields .1 5Inre centyears ,wehaveappliedtheintermolecularinteractionstoenergeticsystemsandobtainedsomemeaningfulinfor mationthatisvaluableforthestudyofenergeticmateri als .6 14 Thebehaviorofmolecularcomplexesisusuallybe tweentwoextremes :thegasphaseandthecrys…  相似文献   

6.
The structures, the binding energies and the thermodynamic properties of formamide and hydroxyacetonitrile(HAN) dimers have been studied by means of the self-consistent ab initio Hartree-Fock and the second-order Mφller-Plesset correlation energy correction methods. The counterpoise procedure was used to check the basis set superposition error(BSSE) of the binding energies. There exist cyclic structures in a formamide dimer(Ⅰ), a HAN dimer(Ⅱ) and their heterodimer(Ⅲ). The corrected binding energies for dimers Ⅰ, Ⅱ and Ⅲ are respectively -45.53, -45.83 and -43.89 kJ/mol at the MP2/aug-cc-p VDZ//HF/aug-cc-p VDZ level. The change of the Gibbs free energies(ΔG) in the process of Ⅰ Ⅱ→2Ⅲ was predicted to be -2.74 kJ/mol at 298.15 K. Dimer Ⅲ can be spontaneously produced in the mixture of formamide and HAN, which is in agreement with the experimental fact that most cyanohydrins are capable of interacting with dipeptide cyclo-His-Phe(CHP).  相似文献   

7.
The binding energies and the equilibrium hydrogen bond distances as well as the potential energy curves of 48 hydrogen‐bonded amide–thymine and amide–uracil dimers are evaluated from the analytic potential energy function established in our lab recently. The calculation results show that the potential energy curves obtained from the analytic potential energy function are in good agreement with those obtained from MP2/6‐311+G** calculations by including the BSSE correction. For all the 48 dimers, the analytic potential energy function yields the binding energies of the MP2/6‐311+G** with BSSE correction within the error limits of 0.50 kcal/mol for 46 dimers, only two differences are larger than 0.50 kcal/mol and the largest one is only 0.60 kcal/mol. The analytic potential energy function produces the equilibrium hydrogen bond distances of the MP2/6‐311+G** with BSSE correction within the error limits of 0.050 Å for all the 48 dimers. The analytic potential energy function is further applied to four more complicated hydrogen‐bonded amide–base systems involving amino acid side chain and β‐sheet. The values of the binding energies and equilibrium hydrogen bond distances obtained from the analytic potential energy function are also in good agreement with those obtained from MP2 calculations with the BSSE correction. These results demonstrate that the analytic potential energy function can be used to evaluate the binding energies in hydrogen‐bonded amide–base dimers quickly and accurately. © 2010 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

8.
Ab initio calculations at Hartree–Fock and fourth‐order Mø ller–Plesset (MP4) correlation correction levels with 6‐31G* basis set have been performed on the epoxyethane dimer. Dimer binding energies have been corrected for the basis set superposition error (BSSE) and the zero‐point energy. The greatest corrected dimer binding energy is −8.36 kJ/mol at the MP4/6‐31G*//HF/6‐31G* level. The natural bond orbital analysis has been performed to trace the origin of the weak interactions that stabilize dimer. © 2000 John Wiley & Sons, Inc. Int J Quant Chem 78: 94–98, 2000  相似文献   

9.
The density functional method was applied to the study of 1,1‐diamino‐2,2‐dinitroethylene (Fox‐7)/H2O dimer. All the possible dimers ( 1, 2 and 3 ), as well as the monomers, were fully optimized with the DFT method at the B3LYP/6‐311++G** level. The basis set superposition errors (BSSE) are 4.62, 4.07 and 3.45 kJ/mol, and the zero point energy (ZPE) corrections for the interaction energies are 7.94, 5.66 and 6.40 kJ/mol for 1, 2 and 3 , respectively. Dimer 1 is the most stable, judged by binding energy. After BSSE and ZPE corrections, the greatest corrected intermolecular interaction energy of dimer 1 was predicted to be ?29.36 kJ/mol. The charge redistribution mainly occurs on the adjacent N–H··· O atoms and N–O··· H atoms between submolecules. The oxygen in the nitro group acts as a moderate hydrogen acceptor as compared to water oxygen. Based on the statistical thermodynamic method, the standard thermodynamic functions, heat capacities (C0P), entropies (S0T) and thermal corrections to enthalpy (H0T), and the changes of thermodynamic properties on going from monomer to dimer over the temperature range 200.00‐700.00 K were predicted. It is energetically or thermodynamically favorable for Fox‐7 to bind with H2O and to form dimer 1 at room temperature.  相似文献   

10.
1 INTRODUCTION Tetrazole and its derivatives are widely applied in the fields of agriculture, biology, chemistry, phar- macology and photographic technology, and they play significant roles in the science and technology as well as national defence[1]. In the past, the res- earches were focused on the molecular geometries, electronic structures, IR, thermodynamic properties, tautomerization, pyrogenation and sensitivity of tetrazole compounds[1~5]. However, study of tetra- zole dimers ha…  相似文献   

11.
The binding energies and the equilibrium hydrogen bond distances as well as the potential energy curves of 20 hydrogen‐bonded amide–base dimers are evaluated from the analytic potential energy function established in our laboratory recently. The analytic potential energy function is used to calculate the N? H···N, N? H···O?C, C? H···N, and C? H···O?C dipole–dipole attractive interaction energies and C?O···O?C, N? H···H? N, and N? H···H? C dipole–dipole repulsive interaction energies in the 20 dimers composed of DNA bases adenine, guanine, cytosine, or thymine and peptide amide. The calculation results show that the potential energy curves obtained from the analytic potential energy function are in good agreement with those obtained from MP2/6‐311+G** calculations by including the basis set superposition error (BSSE) correction. For all the 20 dimers, the analytic potential energy function yields the binding energies of the MP2/6‐311+G** with BSSE correction within the error limits of 0.50 kcal/mol for 19 dimers, only one difference is larger than 0.50 kcal/mol and the difference is only 0.61 kcal/mol. The analytic potential energy function produces the equilibrium hydrogen bond distances of the MP2/6‐311+G** with BSSE correction within the error limits of 0.030 Å for all the 20 dimers. The analytic potential energy function is further applied to four more complicated DNA base‐peptide amide systems involving amino acid side chain and β‐sheet. The values of the binding energies and equilibrium hydrogen bond distances obtained from the analytic potential energy function are also in good agreement with those obtained from MP2 calculations with the BSSE correction. These results demonstrate that the analytic potential energy function can be used to evaluate the binding energies in hydrogen‐bonded peptide amide–DNA base dimers quickly and accurately. © 2011 Wiley Periodicals, Inc. J Comput Chem, 2011  相似文献   

12.
The basis set superposition error (BSSE) influence in the geometry structure, interaction energies, and intermolecular harmonic and anharmonic vibrational frequencies of cyclic formamide–formamide and formamide–water dimers have been studied using different basis sets (6‐31G, 6‐31G**, 6‐31++G**, D95V, D95V**, and D95V++**). The a posteriori “counterpoise” (CP) correction scheme has been compared with the a priori “chemical Hamiltonian approach” (CHA) both at the Hartree–Fock (HF) and second‐order Møller–Plesset many‐body perturbation (MP2) levels of theory. The effect of BSSE on geometrical parameters, interaction energies, and intermolecular harmonic vibrational frequencies are discussed and compared with the existing experimental data. As expected, the BSSE‐free CP and CHA interaction energies usually show less deep minima than those obtained from the uncorrected methods at both the HF and MP2 levels. Focusing on the correlated level, the amount of BSSE in the intermolecular interaction energies is much larger than that at the HF level, and this effect is also conserved in the values of the force constants and harmonic vibrational frequencies. All these results clearly indicate the importance of the proper BSSE‐free correlation treatment with the well‐defined basis functions. At the same time, the results show a good agreement between the a priori CHA and a posteriori CP correction scheme; this agreement is remarkable in the case of large and well‐balanced basis sets. The anharmonic frequency correction values also show an important BSSE dependence, especially for hydrogen bond stretching and for low frequencies belonging to the intermolecular normal modes. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

13.
NTO二聚体分子间相互作用的理论研究   总被引:1,自引:0,他引:1  
徐丽娜  肖鹤鸣  方国勇  居学海 《化学学报》2005,63(12):1062-1068
在DFT-B3LYP/6-311++G**水平上求得NTO二聚体势能面上六种优化构型和电子结构. 经基组叠加误差(BSSE)和零点能(ZPE)校正, 求得分子间最大相互作用能为-53.66 kJ/mol. 二子体系间的电荷转移很少. 由自然键轨道分析揭示了相互作用的本质. 对优化构型进行振动分析, 并基于统计热力学求得200.0~800.0 K温度范围从单体形成二聚体的热力学性质变化. 发现二聚主要由强氢键所贡献, 但结合能大小并不为氢键所完全决定. 二聚过程在较低温度或常温下能自发进行.  相似文献   

14.
Density functional theory at the B3LYP level with the 6‐311G** basis set is performed to calculate the systems consisting of up to four hydrazoic acid molecules. The dimers are found to exhibit cyclic and chain structures with N … H contacts at ca. 2.1–2.7 Å. However, there are only cyclic structures with N … H contacts at ca. 2.0–2.3 Å and 2.0–2.1 Å in the trimer and tetramer, respectively. Hydrogen bond distances in the trimer and tetramer are shorter than those in the cyclic dimer as a result of the stronger interaction between molecules. The contribution of cooperative effect to the interaction energy is significant. After the correction of the basis set superposition error and zero‐point energy, the binding energies are ?10.69, ?29.34, and ?54.26 kJ·mol?1 for the most stable dimer, trimer, and tetramer, respectively. The calculated IR shifts for N? H stretching mode increase with the size of the cluster growths, reaching more than 200 cm?1 in the tetramer. For the most stable clusters, the transition from the monomer to dimer, dimer to trimer, and trimer to tetramer involve changes of ?14.40, ?25.68, and ?31.88 kJ·mol?1 for the enthalpies at 298.15 K and 1atm, respectively. We also perform Mulliken populations analysis and find the Mulliken populations on intermolecular N … H increasing in the sequence of the dimer, trimer, and tetramer. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem 94: 279–286, 2003  相似文献   

15.
Stacking energies in low-energy geometries of pyrimidine, uracil, cytosine, and guanine homodimers were determined by the MP2 and CCSD(T) calculations utilizing a wide range of split-valence, correlation-consistent, and bond-functions basis sets. Complete basis set MP2 (CBS MP2) stacking energies extrapolated using aug-cc-pVXZ (X = D, T, and for pyrimidine dimer Q) basis sets equal to -5.3, -12.3, and -11.2 kcal/mol for the first three dimers, respectively. Higher-order correlation corrections estimated as the difference between MP2 and CCSD(T) stacking energies amount to 2.0, 0.7, and 0.9 kcal/mol and lead to final estimates of the genuine stacking energies for the three dimers of -3.4, -11.6, and -10.4 kcal/mol. The CBS MP2 stacking-energy estimate for guanine dimer (-14.8 kcal/mol) was based on the 6-31G(0.25) and aug-cc-pVDZ calculations. This simplified extrapolation can be routinely used with a meaningful accuracy around 1 kcal/mol for large aromatic stacking clusters. The final estimate of the guanine stacking energy after the CCSD(T) correction amounts to -12.9 kcal/mol. The MP2/6-31G(0.25) method previously used as the standard level to calculate aromatic stacking in hundreds of geometries of nucleobase dimers systematically underestimates the base stacking by ca. 1.0-2.5 kcal/mol per stacked dimer, covering 75-90% of the intermolecular correlation stabilization. We suggest that this correction is to be considered in calibration of force fields and other cheaper computational methods. The quality of the MP2/6-31G(0.25) predictions is nevertheless considerably better than suggested on the basis of monomer polarizability calculations. Fast and very accurate estimates of the MP2 aromatic stacking energies can be achieved using the RI-MP2 method. The CBS MP2 calculations and the CCSD(T) correction, when taken together, bring only marginal changes to the relative stability of H-bonded and stacked base pairs, with a slight shift of ca. 1 kcal/mol in favor of H-bonding. We suggest that the present values are very close to ultimate predictions of the strength of aromatic base stacking of DNA and RNA bases.  相似文献   

16.
The structure, energetics, and vibrational spectra of the (HXeCN)2 dimer were investigated at the CCSD(T), MP2 and B3LYP levels. Such properties of the (HXeCN)3 trimer and (HXeCN)4 tetramer were investigated at the B3LYP level. The dimer, trimer, and tetramer were predicted to have a C2h, C2v, and D2d structure, respectively. In all of these oligomers, the N?Xe intermonomeric interaction is the most important one for holding the monomers together. Included with the ZPVE and BSSE, the stabilization energy of the dimer is 12.36 kcal/mol at the CCSD(T) level, while those of the dimer, trimer, and tetramer are 10.42, 18.23, and 31.34 kcal/mol, respectively, at the B3LYP level. At the B3LYP level, with respect to those of the isolated monomer, the C-Xe and Xe-H asymmetric stretching frequencies are shifted by -11.2 and +128.0 cm(-1) for the dimer, -51.6, +220.7 and -11.5, +96.6 cm(-1) for the trimer, and -14.1 and +201.8 cm(-1) for the tetramer.  相似文献   

17.
将水分子视为由2个O—H键偶极构成, 再将水分子间的三体作用视为长程诱导作用和短程校正之和, 使用Thole模型计算长程诱导作用, 通过同时考虑不同水分子间的置换和同一个水分子中2个键偶极间的置换计算短程校正, 从而提出了一个可快速计算水团簇三体作用强度的新方法. 根据已报道的12347个水三聚体的结构和CCSD(T)三体作用能, 确定了该方法所需参数. 将该方法和所确定的参数应用于67个水团簇体系, 计算这些体系的三体作用能, 并与CCSD(T), MP2, M06-2X方法的计算结果进行比较. 结果表明, 相对于CCSD(T)方法的总三体作用能, 本文方法的均方根偏差(RMSD)仅为3.32 kJ/mol, 平均相对偏差(MRD)仅为2.43%; 对较大水团簇体系, 该方法计算精度稍优于MP2方法, 明显优于M06-2X方法, 并且更快捷高效.  相似文献   

18.
Benzene-methanol cluster structures were investigated with theoretical chemistry methods to describe the microsolvation of benzene and the benzene-methanol azeotrope. Benzene-methanol (MeOH) clusters containing up to six methanol molecules have been calculated by ab initio [MP2/6-311++G(d,p)//MP2/6-31+G(d,p) + BSSE correction] method. The BSSE was found quite large with this basis set, hence, different extrapolation schemes in combination with the aug-cc-pVxZ basis sets have been used to estimate the complete basis set limit of the MP2 interaction energy [ΔE(MP2/CBS)]. For smaller clusters, n ≤ 3, DFT procedures (DFTB+, MPWB1K, M06-2X) have also been applied. Geometries obtained for these clusters by M06-2X and MP2 calculations are quite similar. Based on the MP2/CBS results, the most stable C(6)H(6)(MeOH)(3) cluster is characterized by a hydrogen bonded MeOH trimer chain interacting with benzene via π···H-O and O···H-C(benzene) hydrogen bonds. Larger benzene-MeOH clusters with n ≥ 4 consist of cyclic (MeOH)(n) subclusters interacting with benzene by dispersive forces, to be denoted by C(6)H(6) + (MeOH)(n). Interaction energies and cooperativity effects are discussed in comparison with methanol clusters. Besides MP2/CBS calculations, for selected larger clusters the M06-2X/6-311++G(d,p)//M06-2X/6-31+G(d,p) procedure including the BSSE correction was also used. Interaction energies obtained thereby are usually close to the MP2/CBS limit. To model the benzene-MeOH azeotrope, several structures for (C(6)H(6))(2)(MeOH)(3) clusters have been calculated. The most stable structures contain a tilted T-shaped benzene dimer interacting by π···H-O and O···H-C (benzene) hydrogen bonds with a (MeOH)(3) chain. A slightly less negative interaction energy results for a parallel displaced benzene sandwich dimer with a (MeOH)(3) chain atop of one of the benzene molecules.  相似文献   

19.
N-H···π hydrogen-bonded (H-bonded) structures were studied by applying vibrational spectroscopy to self-aggregate clusters of 2,5-dimethylpyrrole (DMPy) and its binary clusters with pyrrole (Py). The NH stretching vibrations of jet-cooled clusters were observed by IR cavity ringdown spectroscopy. A combination of experiments and density functional theory calculations revealed the stable structures, intermolecular binding energies, and harmonic vibrational frequencies. The IR spectrum of the DMPy self-aggregate clusters was very similar in spectral features to that of the Py clusters in a previous work. The observed NH stretching vibrations at 3505, 3420, 3371, and 3353 cm(-1) are simultaneously red-shifted by ~25 cm(-1) from the Py monomer, dimer, trimer, and tetramer, respectively. Based on a spectral analogy of DMPy with Py, and a consistency of the calculated harmonic frequencies with experiments, the H-bonded structures of the DMPy clusters were determined to be of a T-shape for a dimer and a cyclic for a trimer and a tetramer. For the DMPy-Py binary clusters, we discussed the stability and geometry of the N-H···π interactions in the T-shaped dimer and the cyclic trimer. The binary dimer showed the only single NH stretch at 3419 cm(-1) in the IR spectrum. A vibrational analysis of the H-bonded NH stretches as well as the calculated stabilization energies deduced that only the binary dimer by DMPy as an acceptor and Py as a donor can exist in a supersonic jet. For binary trimers, NH stretches were observed due to both (DMPy)(2)-(Py)(1) and (DMPy)(1)-(Py)(2). They were found to have different vibrational patterns from each other; the former showed three dispersed NH stretches, and the other had two quasi-degenerate NH stretches. Throughout this study, we also considered the intermolecular geometries, such as the H-bond distance and the angle in terms of the methyl group substitution effect.  相似文献   

20.
Density-functional method with different basis sets was applied to the study of the highly efficient and low sensitive explosive 3-nitro-1,2,4-triazole-5-one (NTO) in both gaseous dimer and its bulk state. The binding energies have been corrected for the basis set superposition errors. Six stable dimers (II-VII) were located. The corrected binding energy of the most stable dimer VII is predicted to be -53.66 kJ/mol at the B3LYP/6-311++G(**) level. It was found that the structures of the more stable dimers (V-VII) are through the hydrogen bonding interaction between the carbonyl oxygen and the azole hydrogen of 3-nitro-1,2,4-triazole-5-one. The changes of Gibbs free energies (DeltaG) in the processes from the monomer to the dimers at 298.15 K are 8.51, 0.90, 0.35, -8.74, -10.67, and -11.06 kJ/mol for dimers from II to VII, respectively. Dimers V-VII, possessing cyclic structures, can be spontaneously produced from the isolated monomer at room temperature. The lattice energy is -156.14 kJ/mol, and this value becomes to -150.43 kJ/mol when a 50% correction of the basis set superposition error was adopted. The frontier bands are quite flat. Judged from the value of band gap of 4.0 eV, it may be predicted that 3-nitro-1,2,4-triazole-5-one is an insulator. Most atoms in NTO, with the exception of C(5) atom and the nitro atoms, make up the upper valence bands. In contrast, the lower conduction bands mainly consist of the nitro N and O atoms. The population of the C-NO(2) bond is much less than those of the other bonds and the detonation may be initiated by the breakdown of this bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号