首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorption of H2 molecule on the Ti (0 0 0 1)-(2 × 1) surface was studied by density functional theory with generalized gradient approximation (GGA). The parallel and vertical absorption cases were investigated in detail by adsorption energy and electronic structure analysis, we obtained three stable configurations of FCC-FCC (the two H atoms adsorption on the two adjacent fcc sites of Ti (0 0 0 1) surface, respectively), HCP-HCP (the two H atoms adsorption on the two adjacent hcp sites of Ti (0 0 0 1) surface, respectively) and FCC-HCP (the one H atom adsorption on the fcc site and the other adsorption on the near hcp site) based on the six different parallel adsorption sites after the H2 molecule dissociates. However, all the end configurations of four vertical adsorption sites were unstable, H2 molecule was very easy to desorb from Ti surface. The H-H bond breaking and Ti-H bond forming result from the H2 molecule dissociation. H-H bond breaking length ranges from 1.9 Å to 2.3 Å for different adsorption configurations due to the strong Ti-H bond forming. The H2 dissociative approach and the end stable configurations formation in parallel adsorption processes are attributed to the quantum mechanics steering effects.  相似文献   

2.
We report first principles calculations to analyze the ruthenium adsorption and diffusion on GaN(0 0 0 1) surface in a 2×2geometry. The calculations were performed using the generalized gradient approximation (GGA) with ultrasoft pseudopotential within the density functional theory (DFT). The surface is modeled using the repeated slabs approach. To study the most favorable ruthenium adsorption model we considered T1, T4 and H3 special sites. We find that the most energetically favorable structure corresponds to the Ru- T4 model or the ruthenium adatom located at the T4 site, while the ruthenium adsorption on top of a gallium atom (T1 position) is totally unfavorable. The ruthenium diffusion on surface shows an energy barrier of 0.612 eV. The resultant reconstruction of the ruthenium adsorption on GaN(0 0 0 1)- 2×2 surface presents a lateral relaxation of some hundredth of Å in the most stable site. The comparison of the density of states and band structure of the GaN(0 0 0 1) surface without ruthenium adatom and with ruthenium adatom is analyzed in detail.  相似文献   

3.
Using density functional theory (DFT) in combination with nudged elastic band (NEB) method, the dissociative chemisorptions and diffusion processes of hydrogen on both pure and Fe-doped Mg(0 0 0 1) surfaces are studied. Firstly, the dissociation pathway of H2 and the relative barrier were investigated. The calculated dissociation barrier (1.08 eV) of hydrogen molecule on a pure Mg(0 0 0 1) surface is in good agreement with comparable experimental and theoretical studies. For the Fe-doped Mg(0 0 0 1) surface, the activated barrier decreases to 0.101 eV due to the strong interaction between the s orbital of H and the d orbital of Fe. Then, the diffusion processes of atomic hydrogen on pure and Fe-doped Mg(0 0 0 1) are presented. The obtained diffusion barrier to the first subsurface is 0.45 eV and 0.98 eV, respectively. Finally, Chou method was used to investigate the hydrogen sorption kinetic mechanism of pure MgH2 and Mg mixed with 5 at.% Fe atoms composites. The obtained activation energies are 0.87 ± 0.02 and 0.31 ± 0.01 eV for H2 dissociation on the pure surface and H atom diffusion in Fe-doped Mg surfaces, respectively. It suggests that the rate-controlling step is dissociation of H2 on the pure Mg surface while it is diffusion of H atom in the Fe-doped Mg surface. And both of fitting data are matching well with our calculation results.  相似文献   

4.
In this paper we present a first-principle study on the energetics of a single As2 molecule on GaSb(0 0 1) reconstructed surface. In order to shed light into the mechanisms of anion exchange at the Sb-rich GaSb(0 0 1) surface, we studied firstly As2 adsorption and then As for Sb exchange. We identify a surface region where both the processes are energetically favored. The results of this twofold analysis can be combined to derive possible reaction paths for the anion exchange process.  相似文献   

5.
Density functional theory calculations have been applied to investigate the adsorption geometry of water overlayers on the NaCl(1 0 0) surface in the monolayer regime. Competition between H-H intermolecular repulsion and the attraction of the polar molecules to the surface ions results in the most stable structure having a 2 × 1 adsorption symmetry with an adsorption energy of 415 meV. Overlayers of 1 × 1 symmetry, as observed in experiment, have slightly lower adsorption energies. The layers are also unstable with respect to rotation of individual molecules. Multiple hydrogens/oxygens interacting with a single substrate ion can pull that ion out of the surface, although the examples considered are energetically very unfavourable. Overlayers of 1 × 1 symmetry with a coverage of one water molecule per NaCl do not have a high enough adsorption energy to wet the surface.  相似文献   

6.
The adsorption of the chiral modifier cinchonidine on Au(l 1 1) in UHV has been studied by means of TPD, LEED and XPS. In the monolayer the molecule is bound via nitrogen lone pair electrons of its quinoline part rather than via the π-system of this aromatic moiety. Intact molecular desorption is only observed for the multilayers. Decomposition in the first monolayer upon heating occurs above 400 K, indicating a stronger interaction in the monolayer. No long-range ordered structures were observed via LEED. Long-time exposure leads to rearrangement and further stabilization of the first molecular monolayer. Quinoline is bound to gold via the nitrogen lone pair as well. The binding energy of 9.6 kcal/mol is characteristic for physisorption.  相似文献   

7.
The growth of thin K films on Si(1 1 1)-7 × 7 has been investigated by selecting the input and output polarizations of second-harmonic generation (SHG) at room temperature (RT) and at an elevated temperature of 350 °C. The SH intensity at 350 °C showed a monotonic increase with K coverages up to a saturated level, where low energy electron diffraction (LEED) showed a 3 × 1 reconstructed structure. The additional deposition onto the K-saturated surface at 350 °C showed only a marginal change in the SH intensity. These variations are different from the multi-component variations up to 1 ML and orders of magnitude increase due to excitation of plasmons in the multilayers at RT. The variations of SHG during desorption of K at 350 °C showed a two-step decay with a marked shoulder which most likely corresponds to the saturation K coverage of the Si(1 1 1)-3 × 1-K surface. The dominant tensor elements contributing to SHG are also identified for each surface.  相似文献   

8.
Oxygen vacancy pairs have been suggested to play a role in the reduction of NO molecules on ceria and for the oxidation processes of reducible rare-earth oxides. The formation energy of the oxygen vacancy pairs and the changes in the structural and electronic properties of the ceria (110) surface with oxygen vacancy pairs are investigated using density-functional theory (DFT + U) methodology within the generalized gradient approximation. It is found that the excess electrons localize on the Ce ions neighbouring the vacancies, and the most stable structure for the oxygen vacancy pairs on the ceria (110) surface is at next-nearest-neighbour site.  相似文献   

9.
Pd-Cu bimetallic surfaces formed through a vacuum-deposition of Pd on Cu(1 1 1) have been discussed on the basis of carbon monoxide (CO) adsorption: CO is used as a surface probe and infrared reflection absorption (IRRAS) spectra are recorded for the CO-adsorbed surfaces. Low energy electron diffraction (LEED) patterns for the bimetallic surfaces reveal six-fold symmetry even after the deposition of 0.6 nm. The lattice spacings estimated by the separations of reflection high-energy electron diffraction (RHEED) streaks increase with increasing Pd thickness. Room-temperature CO exposures to the bimetallic surfaces formed by the Pd depositions less than 0.3 nm thickness generate the IRRAS bands due to the three-fold-hollow-, bridge- and linear-bonded CO to Pd atoms. In particular, on the 0.1 nm-thick Pd surface, the linear-bonded CO band becomes apparent at an earlier stage of the exposure. In contrast, the bridge-bonded CO band dominates the IRRAS spectra for CO adsorption on the 0.6 nm-thick Pd surface, at which the lattice spacing corresponds to that of Pd(1 1 1). A 90 K-CO exposure to the 0.1 nm-thick Pd surface leads to the IRRAS bands caused not only by CO-Pd but also by CO-Cu, while the Cu-related band is almost absent from the spectra for the 0.3 nm-thick Pd surface. The results clearly reveal that local atomic structures of the outermost bimetallic surface can be discussed by the IRRAS spectra for the probe molecule.  相似文献   

10.
In attempt to correlate electronic properties and chemical composition of atomic hydrogen cleaned GaAs(1 0 0) surface, high-resolution photoemission yield spectroscopy (PYS) combined with Auger electron spectroscopy (AES) and mass spectrometry has been used. Our room temperature investigation clearly shows that the variations of surface composition and the electronic properties of a space charge layer as a function of atomic hydrogen dose display three successive interaction stages. There exists a contamination etching stage which is observed up to around 250 L of atomic hydrogen dose followed by a transition stage and a degradation stage which is observed beyond 700 L of exposure. In the first stage, a linear shift in the surface Fermi level is observed towards the conduction band by 0.14 eV, in agreement to the observed restoration of the surface stoichiometry and contamination removal. The next stage is characterized by a drop in ionization energy and work function, which quantitatively agrees with the observed Ga-enrichment as well as the tail of the electronic states attributed to the breaking As-dimers. As a result of the strong hydrogenation, the interface Fermi level EF − Ev has been pinned at the value of 0.75 eV what corresponds to the degradation stage of the GaAs(1 0 0) surface that exhibits metallic density of states associated with GaAs antisites defects. The results are discussed quantitatively in terms of the surface molecule approach and compared to those obtained by other groups.  相似文献   

11.
We have investigated the electronic structure of the Yb/Si(1 1 1)-(3 × 2) surface using angle-resolved photoelectron spectroscopy. Five surface states have been identified in the gap of the bulk band projection. Among these five surface state, the dispersions of three of them agree well with those of the surface states of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. The dispersions of the two other surface states agree well with those observed on the Ca/Si(1 1 1)-(3 × 2) surface, whose basic structure is the same as that of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. Taking these results into account, we conclude that the five surface states observed in the band gap originate from the orbitals of Si atoms that form a honeycomb-chain-channel structure.  相似文献   

12.
Scanning tunneling microscopy (STM) and spectroscopy (STS) carried out in vacuum and air were used to study the electronic structure of the Au (1 1 1) surface in the range of 0.0-0.7 eV below the Fermi level. The STS experiment carried out in UHV showed the existence of the Shockley surface state (SS) located 0.48 eV below the Fermi level. STS carried out in air showed strong local maximum located 0.35 eV below the Fermi level. This maximum was ascribed to the SS shifted toward lower energy due to carbon and oxygen overlayer. To confirm that the SS could exist on the sample exposed to air we did ultraviolet photoemission spectroscopy (UPS) experiment on air-treated and clean Au (1 1 1). Our results suggest that the SS position initially measured at 0.38 eV below the Fermi level was shifted to 0.27 eV after air treatment. Additionally, the level of contamination was measured using X-ray photoelectron spectroscopy (XPS).  相似文献   

13.
Caesiated InAs(1 1 1)B (1 × 1) and InAs(1 1 1)A (2 × 2) surfaces have been studied by photoelectron spectroscopy. On the InAs(1 1 1)B a new (√3 × √3)R30° reconstruction was observed. During Cs evaporation remarkably small changes are observed in the lone pair states, and no sign of an accumulation layer at the surface can be observed. Instead, the additional charge provided by Cs is rapidly transported towards the bulk. On the InAs(1 1 1)A cesium behaves as a typical electropositive alkali metal donator that enhances the already existing accumulation layer.  相似文献   

14.
The electrical and magnetic properties of thin iron (Fe) films have sparked significant scientific interest. Our interest, however, is in the fundamental interactions between light and matter. We have discovered a novel application for thin Fe films. These films are sources of terahertz (THz) radiation when stimulated by an incident laser pulse. After intense femtosecond pulse excitation by a Ti:sapphire laser, these films emit picosecond, broadband THz frequencies. The terahertz emission provides a direct measure of the induced ultrafast change in magnetization within the Fe film. The THz generation experiments and the growth of appropriate thin Fe films for these experiments are discussed. Several criteria are used to select the substrate and film growth conditions, including that the substrate must permit the epitaxial growth of a continuous, monocrystalline or single crystal film, yet must also be transparent to the emitted THz radiation. An Fe(0 0 1) film grown on the (0 0 1) surface of a magnesium oxide (MgO) substrate makes an ideal sample. The Fe films are grown by physical vapor deposition (PVD) in an ultrahigh vacuum (UHV) system. Low energy electron diffraction (LEED) and Auger electron spectroscopy (AES) are used to characterize the Fe(0 0 1) films. Two substrate surface preparation methods are investigated. Fe(0 0 1) films grown on MgO(0 0 1) substrates that are used as-received and films grown on MgO(0 0 1) substrates that have been UV/ozone-cleaned ex vacuo and annealed in vacuo produce the same results in the THz generation experiments. Either substrate preparation method permits the growth of samples suitable for the THz emission experiments.  相似文献   

15.
In this paper, the InGa-terminated InGaAs(1 0 0) (4 × 2)/c(8 × 2) surface was studied in detail, which turned out to be the most suitable to develop an InGaAs/GaAsSb interface that is as sharp as possible. In ultra high vacuum the InGaAs surface was investigated with low-energy electron diffraction, scanning tunneling microscopy and UV photoelectron spectroscopy employing synchrotron radiation as light source. Scanning the ΓΔX direction by varying the photon energy between 8.5 eV and 50 eV, two surface states in the photoelectron spectra were observed in addition to the valence band peaks.  相似文献   

16.
To understand CdTe doping with In, first-principle calculations are performed to obtain the various kinds of surface-structure for In on CdTe (0 0 1) surface. Of all the structures examined, the structure of CdTe (0 0 1) as caused by In adsorption atoms at the fourfold hollow sites with 0.25 monolayer coverage is the most energetically favorable. In atoms are adsorbed on the Cd-terminated surface, whereas below the Te-terminated surface. For the Cd-terminated surface, cadmium vacancy can form spontaneously and is energetically favorable. In atoms are likely to be adsorbed/incorporated at an interstitial site on Te-terminated CdTe (0 0 1) surfaces for most of the range of the chemical potential.  相似文献   

17.
We have investigated the energetic stability and equilibrium geometry of the adsorption of transition metal Fe atoms near the self-organized Bi lines on hydrogen passivated Si(0 0 1) surface. Our total energy results show that there is an attractive interaction between Fe adatoms along the Bi-nanolines. For the energetically most stable configuration, the Fe adatoms are seven-fold coordinated, occupying the subsurface interstitial sites aside the Bi-nanolines. With increased coverage, Fe atoms are predicted to form two parallel lines, symmetrically on both sides of the Bi line. Within our local spin-density functional calculations, we find that for the most stable geometries the Fe adatoms exhibit an antiferromagnetic coupling.  相似文献   

18.
In this work a comparative analysis between different Pt-Ru(111) surface models and pure Pt(111) surface is presented. Some aspects of the electronic structure of the surfaces and hydrogen adsorption are analysed based on density functional theory calculations. The hydrogen adsorption energy is significantly reduced when Ru is present on the surface. The substitution of Pt atoms by Ru atoms reinforce the Pt-H bond while the metal-metal bond is strongly modified, making the system less stable.  相似文献   

19.
Thin films of pentacene (C22H14) have become widely used in the field of organic electronics. Here films of C22H14 of thickness ranging from submonolayer to multilayer were thermally deposited on Ag(1 1 1) surface. The determination of molecular geometry in pentacene films on Ag(1 1 1) studied by X-ray absorption at different stages of growth up to one monolayer is presented.XAS spectra at the C K-edge were collected as a function of the direction of the electric field at the surface. The different features of the spectra were assigned to resonances related to the various molecular unoccupied states by the comparison with the absorption coefficient of the pentacene gas phase. The transitions involving antibonding π states show a pronounced angular dependence for all the measured coverages, from submonolayer to multilayer. The spectra analysis indicates a nearly planar chemisorption of the first pentacene layer with a tilt angle of 10°.  相似文献   

20.
We used the scanning tunneling microscope (STM) to examine single-stranded deoxyribonucleic acid (DNA) oligomers deposited on a metal surface. Because STM can be used to study the electrical properties of materials via the tunneling spectra, we used it to visualize DNA oligomers at the single molecule resolution. The 5′-hexachloro-fluorescein phosphoramidite (HEX)-labeled oligomers (sequence, AGCTTC) were observed on an atomically flat Cu(1 1 1) surface. At large tip-sample distances at large set-point biases, the lowest unoccupied molecular orbit (LUMO) peak of the empty state can be observed for the dye molecules on the tunneling spectra. When this distance becomes small, similar spectra as for the Cu substrate were observed for the dye molecule on the LUMO-related peak. Cu gave peaks at small bias voltages in the filled state. From comparison of these peaks on each subunit of the molecules, the measured values of dI/dV on HEX were smaller to those on Cu because of the large size of the HEX molecule, but the normalized values of dI/dV/(I/V) were apparently equal. We believe that the tunneling current is able to pass through the HEX molecules to the Cu substrate, thus reflecting the density of the Cu(1 1 1) surface. Molecular size therefore affects the intensity of dI/dV. LUMO-related peaks sometimes cannot be observed for HEX because of conformational differences, but Cu peaks can almost always be observed for HEX molecules. These peaks for the counter ions are almost the same as those for the Cu substrate. Thus, tunneling spectra can assist in the molecular mapping of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号