首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
The Co-filled carbon nanotubes (CNTs) film was produced on silicon substrate by electron cyclotron resonance microwave plasma chemical vapor deposition (ECR-CVD). The effects of different plasma powers of 200, 300, 400 and 500 W, on the morphology, structure and electrical properties of the CNTs film, were studied. The results showed that the surface density of the vertical nanotubes decreased when the plasma power was higher than 200 W. When plasma power of 300 W was used, the ends of the metal-filled carbon nanotubes (MF-CNTs) became straighter and more uniform. The Co-filled CNTs grown at 300 and 400 W had a current discharge at the applied voltages of 30 and 40 V, respectively. In addition, the surface morphology and the structure of the CNTs film were examined using scanning electron microscopy (SEM) and high-resolution field emission gun transmission electron microscopy (TEM). Energy dispersive X-ray spectroscopy (EDXS) analyses were performed to identify the composition of the material inside the CNTs.  相似文献   

2.
Vertically well-aligned single crystal ZnO nanorod arrays were synthesized and enhanced field electron emission was achieved after radio-frequency (rf) Ar plasma treatment. With Ar plasma treatment for 30 min, flat tops of the as-grown ZnO nanorods have been etched into sharp tips without damaging ZnO nanorod geometrical morphologies and crystallinity. After the Ar ion bombardment, the emission current density increases from 2 to 20 μA cm−2 at 9.0 V μm−1 with a decrease in turn-on voltage from 7.1 to 4.8 V μm−1 at a current density of 1 μA cm−2, which demonstrates that the field emission of the as-grown ZnO nanorods has been efficiently enhanced. The scanning electron microscopy (SEM) results, in conjunction with the results of transmission electron microscopy (TEM), Raman spectroscopy and photoluminescence observation, are used to investigate the mechanisms of the field emission enhancement. It is believed that the enhancements can be mainly attributed to the sharpening of rod tops, and the decrease of electrostatic screening effect.  相似文献   

3.
The effects of Ar microwave plasma treatment on field emission properties of the printed carbon nanotubes (CNTs) cathode films using Ag nano-particles as binder were investigated. The field emission J-E characteristics were measured at varied plasma treatment time. Significant improvement in emission current density, emission stability and uniformity were achieved for the Ar treated CNTs films, even though the plasma treatment increased the turn on electric field slightly. High-resolution transmission electron microscopy (HRTEM) and Raman spectroscopy revealed the microstructural changes of CNTs after the plasma treatment. The improved field emission properties of CNTs film can be attributed to the generation of a high density of structural defects after treatment, which increased greatly the possible emission active sites. Besides, the formation of the sharpened and open-ended CNTs tips is all helpful for improving the field emission properties of the treated CNTs.  相似文献   

4.
Carbon nanotubes (CNTs) deposited by chemical vapor deposition (CVD) were treated by ball milling. The morphologies and field emission properties of the treated CNTs depending on milling time were studied. The emission turn-on field is increased, and the field emission current density is reduced, when the milling time increased from 0.5 to 3 h. The as-deposited long CNTs were cut to short CNTs (∼1 h) and micro-particles (>1 h) with increasing of the milling time. It is found that the optimized milling time is 0.5-1 h, the treated CNTs showed excellent field emission properties, such as low turn-on field, high emission current density and uniform luminescence spots distribution.  相似文献   

5.
Field emission property of printed CNTs-mixed ZnO nanoneedles   总被引:1,自引:0,他引:1  
ZnO nanoneedles were synthesized via thermal evaporation method without any catalyst. Scanning electron microscopy and transmission electron microscopy investigations showed that these products presented a nanoneedle structure. To enhance the field emission (FE) properties of screen printed ZnO nanoneedles, a given amount (0.05 g) carbon nanotubes (CNTs) mixed with (0.5 g) ZnO nanoneedles paste via screen printed method and heat-treatment at (600 °C, 500 °C and 450 °C) was presented. The CNTs-mixed ZnO nanoneedles heat-treated at 450 °C had the lowest turn-on field of 3.75 V/μm, highest field emission current of 0.16 mA at 7.5 V/μm and highest β of 830. An efficiency FE enhancement of 450 °C sample was attributed to melioration of conductance between ZnO nanoneedles and ITO surface by CNTs.  相似文献   

6.
The field emission properties of electrophoretic deposition(EPD) carbon nanotubes (CNTs) film have been improved by depositing CNTs onto the titanium (Ti)-coated Si substrate, followed by vacuum annealing at 900 °C for 2 h, and the enhanced emission mechanism has been studied using X-ray diffraction (XRD), scanning electron microscope (SEM) and Raman spectroscopy. Field emission measurements showed that the threshold electric field was decreased and the emission current stability was improved compared to that of EPD CNTs film on bare Si substrate. XRD and Raman spectroscopy investigations revealed that vacuum annealing treatment not only decreased the structural defects of CNTs but made a titanium carbide interfacial layer formed between CNTs and substrate. The field emission enhancement could be attributed to the improved graphitization of CNTs and the improved contact properties between CNTs and substrate including electrical conductivity and adhesive strength due to the formed conductive titanium carbide.  相似文献   

7.
A novel post-treatment method, including hard hairbrush and electrical treatment, is performed intentionally to improve the field emission capability and stability of screen-printed carbon nanotubes (CNTs). Compared with untreated films, the field emission properties of the treated ones are greatly enhanced. Scanning electron microscopy (SEM) and Raman spectrum studies reveal that field emission properties are enhanced by two factors. Firstly, the improved field emission properties of CNT films can be attributed to the more active CNT surface by removing the organic material cover on the CNTs. Secondly, the gener- ation of a high density of structural defects and the lower resistance contact to the topside CNT emitters after treatment are all helpful to improving the field emission properties of the treated CNTs.  相似文献   

8.
Optical emission spectroscopy and Langmuir probe are used to investigate the low pressure inductively coupled Ar–N2 plasmas as function of rf power, filling pressure and Ar content in N2 discharge. It is observed that the active species generation, dissociation fraction and electron temperature significantly depends on discharge parameters and may be used to optimize the plasma reactor. Mixture of SWCNTs and MWCNTs are treated for different treatment time (0–120 min) at optimum discharge conditions. Changes induced in the elemental composition, surface morphology, crystallographic structure, and structural disorder in the plasma irradiated CNTs are analyzed by EDX, FTIR, SEM, XRD and Raman spectroscopy, respectively. Ar–N2 mixture plasma treatment of CNTs lead to a significant increase in the electrical conductivity, modify the microstructure and induce structural disorder and cause a transition of crystalline phase from well crystalline to an amorphous structure.  相似文献   

9.
The effects of total CH4/Ar gas pressure on the growth of carbon nanomaterials on Si (1 0 0) substrate covered with CoO nanoparticles, using plasma-enhanced chemical vapor deposition (PECVD), were investigated. The structures of obtained products were correlated with the total gas pressure and changed from pure carbon nanotubes (CNTs) through hybrid CNTs/graphene sheets (GSs), to pure GSs as the total gas pressure changed from 20 to 4 Torr. The total gas pressure influenced the density of hydrogen radicals and Ar ions in chamber, which in turn determined the degree of how CoO nanoparticles were deoxidized and ion bombardment energy that governed the final carbon nanomaterials. Moreover, the obtained hybrid CNTs/GSs exhibited a lower turn-on field (1.4 V/μm) emission, compared to either 2.7 V/μm for pure CNTs or 2.2 V/μm for pure GSs, at current density of 10 μA/cm2.  相似文献   

10.
Crystalline coiled carbon nano/micro fibers in thin film form have been synthesized via direct current plasma enhanced chemical vapor deposition (PECVD) on copper substrates with acetylene as a carbon precursor at 10 mbar pressure and 750 °C substrate temperature. The as-prepared samples were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). XRD pattern as well as selected area electron diffraction (SAED) pattern showed that the samples were crystalline in nature. SEM and HRTEM studies showed that as synthesized coiled carbon fibers are having average diameter ∼100 nm and are several micrometers in length. The as-prepared samples showed moderately good electron field emission properties with a turn-on field as low as 1.96 V/μm for an inter-electrode distance 220 μm. The variation of field emission properties with inter-electrode distance has been studied in detail. The field emission properties of the coiled carbon fibrous thin films are compared with that of crystalline multiwalled carbon nanotubes and other carbon nanostructures.  相似文献   

11.
In order to improve the field emission properties of the graphite flakes, the carbon nanotubes (CNTs) are produced on above without the metallic catalyst using mixtures of C2H2 and H2 gases by thermal chemical vapor deposition. We spin the graphite solution on the silicon wafer and dry it, then synthesize the CNTs on the graphite flakes. We change the synthetic time to obtain the optimal conditions for enhancement of field emission properties of graphite flakes. The experimental results show that the density and quality of the CNTs could be controlled significantly by the synthetic time. Besides, the field emission properties of the treated graphite flakes are also affected greatly by it. The emission current density of the treated graphite flakes reaches to 0.5 mA/cm2 at 3 V/μm, and the turn-on field is decreased from 7.7 to 1.9 V/μm after producing the CNTs on above.  相似文献   

12.
We report on the fabrication of carbon nanotubes (CNTs) on Ni-coated stainless steel (SUS) substrates by using dc plasma enhanced chemical vapor deposition. The synthesized CNTs have the diameter of about 30 nm and the length of about 1.2 μm. To verify the effects of SUS substrates on the growth of CNTs, CNTs had also been grown on Ni-coated Si substrates. CNTs grown on the SUS substrates were more uniform compared with those grown on the Si substrates. Field emission properties of the CNT films were measured in the diode configuration, and the turn-on electric field of 3.87 V/μm and field enhancement factor β of about 1737 were obtained from the synthesized CNTs at the gap of 500 μm between the SUS substrate and the anode. These results have not only clarified the effects of the substrate on the growth of CNTs, but also shown the potential of CNTs in field emission applications, especially CNT-based cold-cathode X-ray tubes.  相似文献   

13.
Electron-assisted chemical etching of oxidized chromium, CrOx, has been studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and atomic force microscopy (AFM). Two model substrates were used—10 nm CrOx deposited on Si(1 0 0) that was covered with either native oxide or a 20 nm Au/Pd alloy film. Using chlorine and/or oxygen as etching gases, the experiments were conducted in a customized high vacuum system, equipped with a high density electron source and a low pressure reaction cell. On both substrates, electron-assisted chemical etching of CiOx was detected by SEM, EDS and AFM. Making the method questionable for etching applications, there is substantial substrate damage associated with the etching. The SEM images indicate strongly inhomogeneous material removal, apparently initiated and propagated from specific but unidentified sites. In the experiments involving the Au/Pd film, there was phase separation of Au and Pd, and dewetting to form metallic islands. AFM data show that the etched holes were as deep as 200 nm, confirming relatively rapid etching of the Si substrate after the top layer of Cr oxide was removed.  相似文献   

14.
An improved planar-gate triode with carbon nanotubes (CNTs) field emitters has been successfully fabricated by conventional photolithography, screen printing and electrophoretic deposition (EPD). In this structure, cathode electrodes and ITO arrays linked with gate electrodes were interdigitated and paralleled on the same plane although the gate electrodes and cathode electrodes were isolated by dielectric layer, a so-called improved planar-gate triode structure. An electrophoretic process was developed to selectively deposit CNTs field emitters onto cathode electrodes in the CNTs suspension by an applied voltage between the gate electrodes and cathode electrodes. The optical microscopy and FESEM image showed that the CNTs emitters with the uniform packing density were selectively defined onto the cathode electrodes. In addition, field emission characteristics of an improved planar-gate triode with CNTs field emitters were investigated. The experiment results indicated that the turn-on voltage of this triode structure at current density of 1 μA/cm2 was approximately 55 V. The anode current and gate current came to 396 μA and 325 μA, at gate voltage and anode voltage of 100 V and 4000 V, respectively and at the anode-cathode spacing of 2000 μm. The emission image became brighter and the luminous image with dot matrix on the anode plate obviously increased with the increase of the gate voltage. Moreover, the emission current fluctuation was smaller than 5% for 11 h, which indicated that the improved planar-gate triode has a good field emission performance and long lifetime.  相似文献   

15.
HfNxOy thin films were deposited on Si substrates by direct current sputtering at room temperature. The samples were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction (XRD). SEM indicates that the film is composed of nanoparticles. AFM indicates that there are no sharp protrusions on the surface of the film. XRD pattern shows that the films are amorphous. The field electron emission properties of the film were also characterized. The turn-on electric field is about 14 V/μm at the current density of 10 μA/cm2, and at the electric field of 24 V/μm, the current density is up to 1 mA/cm2. The field electron emission mechanism of the HfNxOy thin film is also discussed.  相似文献   

16.
We achieved the growth of cubic silicon carbide (SiC) films on (1 0 0)Si substrates by pulsed laser deposition (PLD) at moderate temperatures such as 750 °C, from a SiC target in vacuum. The as-deposited films are morphologically and structurally characterized by scanning electron microscopy (SEM), conventional and high-resolution transmission electron microscopy (TEM/HRTEM). The morphology of deposited films is dominated by columns nucleated from a thin nanostructured beta silicon carbide (β-SiC) interface layer. The combined effects of columnar growth, tilted facets of the emerging columns and the presence of particulates on the film surface, lead to a rather rough surface of the films.  相似文献   

17.
Using a novel inductively coupled plasma enhanced chemical vapor deposition (ICP-CVD) with magnetic confinement system, Ti-Si-N films were prepared on single-crystal silicon wafer substrates by sputtering Ti and Si (5 at.%:1 at.%) alloyed target in argon/nitrogen plasma. High-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), field emission scanning electron microscope (FESEM), atomic force microscopy (AFM) and Nano Indenter XP tester were employed to characterize nanostructure and performances of the films. These films were essentially composed of TiN nanocrystallites embedded in an amorphous Si3N4 matrix with maximum hardness value of 44 GPa. Experimental results showed that the film hardness was mainly dependent on the TiN crystallite size and preferred orientation, which could be tailored by the adjustment of the N2/Ar ratio. When the N2/Ar ratio was 3, the film possessed the minimum TiN size of 10.5 nm and the maximum hardness of 44 GPa.  相似文献   

18.
The effects of H2 plasma pretreatment on the growth of vertically aligned carbon nanotubes (CNTs) by varying the flow rate of the precursor gas mixture during microwave plasma chemical vapor deposition (MPCVD) have been investigated in this study. Gas mixture of H2 and CH4 with a ratio of 9:1 was used as the precursor for synthesizing CNTs on Ni-coated TiN/Si(1 0 0) substrates. The structure and composition of Ni catalyst nanoparticles were investigated by using scanning electron microscopy (SEM) and cross-sectional transmission electron microscopy (XTEM). Results indicated that, by manipulating the morphology and density of the Ni catalyst nanoparticles via changing the flow rate of the precursor gas mixture, the vertically aligned CNTs could be effectively controlled. The Raman results also indicated that the intensity ratio of the G and D bands (ID/IG) is decreased with increasing gas flow rate. TEM results suggest H2 plasma pretreatment can effectively reduce the amorphous carbon and carbonaceous particles and, thus, is playing a crucial role in modifying the obtained CNTs structures.  相似文献   

19.
The globe-like diamond microcrystalline-aggregates were fabricated by microwave plasma chemical vapor deposition (MPCVD) method. The ceramic with a Ti mental layer was used as substrate. The fabricated diamond was evaluated by Raman scattering spectroscopy, X-ray diffraction spectrum (XRD), and scanning electron microscope (SEM). The field emission properties were tested by using a diode structure in a vacuum. A phosphor-coated indium tin oxide (ITO) anode was used for observing and characterizing the field emission. It was found that the globe-like diamond microcrystalline-aggregates exhibited good electron emission properties. The turn-on field was only 0.55 V/μm, and emission current density as high as 11 mA/cm2 was obtained under an applied field of 2.9 V/μm for the first operation. The growth mechanism and field emission properties of the globe-like diamond microcrystalline-aggregates are discussed relating to microstructure and electrical conductivity.  相似文献   

20.
沉积工艺参数对碳纳米管薄膜场发射性能的影响   总被引:7,自引:7,他引:0  
利用微波等离子体化学气相沉积(MWPCVD)方法,在不锈钢衬底上直接沉积碳纳米管膜。通过SEM、拉曼光谱和XRD表征,讨论了制备温度和甲烷浓度对碳纳米管膜场发射的影响。结果表明:不同条件下制备的碳纳米管膜的场发射性能有很大差异,保持氢气的流量(100sccm)、生长时间(10min)、反应室压力不变,当甲烷流量为8sccm、温度为700~800℃时,场发射性能最好,开启场强仅为0.8V/μm,发射点分布密集、均匀。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号