首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The electronic structure of polycrystalline ferromagnetic Zn1−xCoxO (0.05≤x≤0.15) and the oxidation state of Co in it, have been investigated. The Co-doped polycrystalline samples are synthesized by a combustion method and are ferromagnetic at room temperature. XPS and optical absorption studies show evidence for Co2+ ions in the tetrahedral symmetry, indicating substitution of Co2+ in the ZnO lattice. However, powder XRD and electron diffraction data show the presence of Co metal in the samples. This give evidence to the fact that some Co2+ ion are incorporated in the ZnO lattice which gives changes in the electronic structure whereas ferromagnetism comes from the Co metal impurities present in the samples.  相似文献   

2.
研究Ho3+掺杂对氧化锌半导体材料的微结构和磁学性质影响. 利用热蒸发技术制备了一系列沉积在Si(100)衬底的Zn1-xHoxO(x=0.0、0.04、0.05)薄膜. X射线光谱、表面形貌以及磁性的实验结果表明,Ho3+掺杂对ZnO薄膜材料的性能影响很大. X射线衍射图显示峰位出现高角度转变并且趋向于(101)取向,在ZnO晶格显示Ho3+置换. 扫描电子显微镜和能谱仪对薄膜的表面形貌以及化学  相似文献   

3.
Influence of Co doping for In in In2O3 matrix has been investigated to study the effect on magnetic vs. electronic properties. Rietveld refinement of X-ray diffraction patterns confirmed formation of single phase cubic bixbyite structure without any parasitic phase. Photoelectron spectroscopy and refinement results further revealed that dopant Co2+ ions are well incorporated at the In3+ sites in In2O3 lattice and also ruled out formation of cluster in the doped samples. Magnetization measurements infer that pure In2O3 is diamagnetic and turns to weak ferromagnetic upon Co doping. Hydrogenation further induces a huge ferromagnetism at 300 K that vanishes upon re-heating. Experimental findings confirm the induced ferromagnetism to be intrinsic, and the magnetic moments to be associated with the point defects (oxygen vacancies Vo) or bound magnetic polarons around the dopant ions.  相似文献   

4.
The present work reports ferromagnetism by doping magnetic Mn atoms in the diamagnetic ZnO matrix and the ferromagnetism has been extended up to 640 K in nano-grained Zn0.95Mn0.05O samples. The bulk and nano-grained samples were stabilized in hexagonal crystal structure with space group p63mc. The grain size and lattice strain of the samples were estimated from room temperature XRD spectrum. Surface morphology of the samples was examined at room temperature using SEM picture and EDX spectrum. The ferromagnetism of the bulk material shows enhancement in nano-grained samples, which was mainly due to the solution of Mn atoms into the lattice sites of ZnO by mechanical milling. The enhancement of magnetic moment and ferromagnetic ordering temperature with reduction in grain size has been understood in terms of the core-shell structure and existing theoretical models. The present work also demonstrated the role of surface spin disorder on the enhancement of ferromagnetism in Zn0.95Mn0.05O nanograins.  相似文献   

5.
Phase pure Zn1?x Co x O thin films grown by pulsed laser deposition have transmittance greater than 75 % in the visible region. Raman studies confirm the crystalline nature of Zn1?x Co x O thin films. Zn0.95Co0.05O thin films show room temperature ferromagnetism with saturation magnetization of 0.4μ B /Co atom. The possible origin of paramagnetism at higher Co doping concentrations can be attributed to the increased nearest-neighbor antiferromagnetic interactions between Co2+ ions in ZnO matrix. XPS confirms the substitution of Co2+ ions into the ZnO host lattice.  相似文献   

6.
We report on the reversible manipulation of room temperature ferromagnetism in Fe (5%) doped In2O3 polycrystalline magnetic semiconductor. The X-ray diffraction and photoemission measurements confirm that the Fe ions are well incorporated into the lattice, substituting the In3+ ions. The magnetization measurements show that the host In2O3 has a diamagnetic ground state, while it shows weak ferromagnetism at 300 K upon Fe doping. The as-prepared sample was then sequentially annealed in hydrogen, air, vacuum and finally in air. The ferromagnetic signal shoots up by hydrogenation as well as vacuum annealing and bounces back upon re-annealing the samples in air. The sequence of ferromagnetism shows a close inter-relationship with the behavior of oxygen vacancies (Vo). The Fe ions tend to a transform from 3+ to 2+ state during the giant ferromagnetic induction, as revealed by photoemission spectroscopy. A careful characterization of the structure, purity, magnetic, and transport properties confirms that the ferromagnetism is due to neither impurities nor clusters but directly related to the oxygen vacancies. The ferromagnetism can be reversibly controlled by these vacancies while a parallel variation of carrier concentration, as revealed by resistance measurements, appears to be a side effect of the oxygen vacancy variation.  相似文献   

7.
Nanoparticles of Co and Ni codoped zinc oxide, Zn0.9Co0.1−xNixO (x=0.0, 0.03, 0.06 and 0.09), diluted magnetic semiconductors (DMSs) are synthesized by the sol-gel method at annealing temperature of 500 °C. X-ray diffraction (XRD) patterns confirm the single phase character of the samples with x=0.0 and 0.03. However, minor NiO secondary phase is detected in the samples with x=0.06 and 0.09. All of them possess the hexagonal wurtzite structure. There is no significant change in the lattice parameters due to variation of doping concentration. The average particle size is found to be 19.31-25.71 nm. FTIR and UV-vis spectroscopic results confirm the incorporation of the dopants into the ZnO lattice structure. Magnetization data reveal the presence of room temperature ferromagnetism (RTFM). The XRD patterns rule out the formation of secondary phase of either metallic Co cluster or CoO in the samples. Nevertheless, the secondary phases are a concern in any DMS system as a source of spurious magnetic signals. Therefore, we carried out the XPS studies from which the oxidation states of Co and Ni are found to be Co2+ and Ni2+, respectively. Moreover, XPS O 1s spectra show evidence of the presence of the oxygen vacancy in the ZnO matrix.  相似文献   

8.
Bi1−xDyxFeO3 (x=0.0, 0.03, 0.05, 0.07, 0.10 and 0.12) ceramics were synthesized by solid state reaction method. Effects of Dy substitution on structural distortion, magnetic and optical properties of BiFeO3 were examined by X-ray diffraction, Raman and UV–Visible spectroscopy. The samples were found to crystallize in rhombohedral structure of BiFeO3 with R3c space group. The reduction in lattice parameters and unit cell volume indicate the distortion in FeO6 octahedra of the rhombohedral structure without any signature of phase transformation up to x=0.12. The predictable weak ferromagnetic hysteresis loops can be observed in the Dy doped samples with maximum remnant magnetization of 0.2103 emu/g for x=0.12. The weak ferromagnetism is ascribed to the suppressed spiral spin structure and magnetically active characteristic of Dy3+ ions together with ferromagnetic coupling between Dy3+ and Fe3+ ions. With optical band gap in visible region, Dy doped BiFeO3 ceramics are potential material for optoelectronic device and solar cell applications.  相似文献   

9.
The Cr-doped zinc oxide (Zn0.97Cr0.03O) nanoparticles were successfully synthesized by sol-gel method. The relationship between the annealing temperature (400 °C, 450 °C, 500 °C and 600 °C) and the structure, magnetic properties and the optical characteristics of the produced samples was studied. The results indicate that Cr (Cr3+) ions at least partially substitute Zn (Zn2+) ions successfully. Energy dispersive spectroscopy (EDS) measurement showed the existence of Cr ion in the Cr-doped ZnO. The samples sintered in air under the temperature of 450 °C had single wurtzite ZnO structure with prominent ferromagnetism at room temperature, while in samples sintered in air at 500 °C, a second phase-ZnCr2O4 was observed and the samples were not saturated in the field of 10000 Oe. This indicated that they were mixtures of ferromagnetic materials and paramagnetic materials. Compared with the results of the photoluminescence (PL) spectra, it was reasonably concluded that the ferromagnetism observed in the studied samples was originated from the doping of Cr in the lattice of ZnO crystallites.  相似文献   

10.
The magnetic properties and the Griffiths singularity were investigated in Mn-site doped manganites of La0.45Sr0.55Mn1−xCoxO3 (x=0, 0.05, 0.10 and 0.15) in this work. The parent sample La0.45Sr0.55MnO3 undergoes a paramagnetic-ferromagnetic transition at TC=290 K and a ferromagnetic-antiferromagnetic transition at TN=191 K. The doping of Co ions enhances the ferromagnetism and suppresses the antiferromagnetism. The enhanced ferromagnetism results from the fact that the Co doping enhances the Mn3+-Mn4+ double-exchange interaction and induces the Co2+-Mn4+ ferromagnetic superexchange interaction. Detailed investigation on the magnetic behavior above TC exhibits that the Griffiths singularity takes place in this series of Mn-site doped compounds. The correlated disorder induced by the Co ionic doping, together with the phase competition from the ferromagnetic and the antiferromagnetic interactions among Mn ions, is responsible for the Griffiths singularity.  相似文献   

11.
We report the microstructural and magnetic properties of transition (3d) and rare earth (4f) metal substituted into the Ax:Zn1?xO (A=Mn, Gd and Mn/Gd) nanocrystal samples synthesized by solgel method. The structural properties and morphology of all samples have been analysed using X-ray diffraction (XRD) method and scanning electron microscopy. The impurity phase in the XRD patterns for all samples is not seen, except (Mn/Gd):ZnO sample where a very weak secondary phase of Gd2O3 is observed. Due to the large mismatch of the ionic radii between Mn2+ and Gd3+ ions, the strain inside the matrix increases, unlike the crystallite size decreases with the substitution of Mn and Gd into ZnO system. A couple of additional vibration modes due to the dopant have been observed in Raman spectrum. The magnetic properties have been studied by vibrating sample magnetometer. The magnetic hysteresis shows that Mn:ZnO and Gd:ZnO have soft ferromagnetic (FM) behaviour, whereas (Mn/Gd):ZnO has strong FM behaviour at room temperature (RT). The enhancement of ferromagnetism (FM) in (Mn/Gd):ZnO sample might be related to short-range FM coupling between Mn2+ and Gd3+ ions via defects potential and/or strain-induced FM coupling due to the expansion lattice by doping. The experimental results indicate that RTFM can be achieved by co-substitution of 3d and 4f metals in ZnO which can be used in spintronics applications.  相似文献   

12.
In this report, Raman and Fourier Transform Infrared (FTIR) measurements were carried out to study the phonon modes of pure and Fe doped ZnO nanoparticles. The nanoparticles were prepared by sol–gel technique at room temperature. The X-ray diffraction measurements reveal that the nanoparticles are in hexagonal wurtzite structure and doping makes the shrinkage of the lattice parameters, whereas there is no alteration in the unit cell. Raman measurements show both E2lowE_{2}^{\mathrm{low}} and E2HighE_{2}^{\mathrm{High}} optical phonon mode is shifted towards lower wave number with Fe incorporation and explained on the basis of force constant variation, stress measurements, respectively. In addition, Fe related local vibrational modes (LVM) were observed for higher concentration of Fe doping. FTIR spectra reveal a band at 444 cm−1 which is specific to E 1 (TO) mode; a red-shift of this mode in Fe doped samples and some surface phonon modes were observed. Furthermore, the observation of additional IR modes, which is considered to have an origin related to Fe dopant in the ZnO nanostructures, is also reported. These additional mode features can be regarded as an indicator for the incorporation of Fe ions into the lattice position of the ZnO nanostructures.  相似文献   

13.
The modifications in electrical and magnetic properties of polycrystalline bulk La0.7Ca0.3Mn1−xTxO3 (T=Fe, Ga) samples at relatively higher doping concentration (x=0.08-0.12) are investigated. All the synthesized, single phase samples were subjected to resistivity measurements in the temperature range 50-300 K. No insulator-metal transition (TP) was observed for Fe doped samples with x=0.12. For all the other samples the transition temperature decreased with increase in doping concentration. The small polaron hoping energy was found to increase, rather slowly, with increase in doping concentration. The effect on magnetic properties is also prominently observed with respect to doping element and doping concentration. Interestingly, with the increase in doping concentration, the Curie temperature (TC) and TP separate out significantly indicating decoupling of electric and magnetic properties. Changes in these properties have been analyzed on the basis of magnetic disorder introduced in the system due to the magnetic and nonmagnetic nature of these ions rather than strong lattice effects which is insignificant due to similar ionic radii of Fe+3 and Ga+3 when compared to that of Mn+3.  相似文献   

14.
Two kinds of vanadium-doped TiO2 powders photocatalysts were prepared by sol-gel method in even doping and uneven doping modes, and were characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), transmission electron microscopy (TEM) and UV-vis diffuse reflectance spectroscopy (DRS). The photocatalytic activity of TiO2 photocatalysts doped by vanadium evenly with lower dopant level up to 0.002 mol.% is better than that of undoped TiO2, while with higher dopant level the activity is worse. TiO2 photocatalysts doped by vanadium unevenly with a p-n junction semiconductor structure, was shown to have a much higher photocatalytic destruction rate than that of TiO2 photocatalysts doped by vanadium evenly and undoped TiO2, which is ascribed mainly to the electrostatic-field-driven electron-hole separation in TiO2 particles doped by vanadium unevenly.  相似文献   

15.
Fe doped ZnO powder samples (Fe/Zn=0.05 and 0.1) were prepared by sol-gel method with H2 deoxidation at 450 °C for several hours or just heated in air at the same temperature. It was showed by vibrating sample magnetometer (VSM) that samples heat treated in H2 could show strong ferromagnetism at room temperature while samples treated in air only show very weak magnetism. XRD using Co kα X-ray revealed that the samples heated in H2 were not pure phase but like a granular system and the magnetism mainly results from Fe3O4 in samples while samples heated in air showed pure ZnO phase. Our work indicated that H2 deoxidation treatment may be an effective technique to fabricate such magnetic semiconductor-like materials with Curie temperature higher than room temperature.  相似文献   

16.
The effects of Fe-doping and Fe-N-codoping on the magnetic properties of SnO2, prepared by chemical co-precipitation technique, are investigated in details. We found that the paramagnetism is the dominant magnetic interaction in Fe doped SnO2. A weak antiferromagnetic coupling between Fe2+ ions is also confirmed through Zero field-cooled (ZFC) and field-cooled (FC) magnetization studies. On the other hand, hystersis behavior is observed for Fe-N-codoped SnO2 samples with coercivity Hc∼420 and 352 Oe for x=0.05 and 0.10, respectively. As no other secondary or impurity phase is detected by XRD study and the presence of N is confirmed by EDX analysis, this observed ferromagnetism is originated due to the substitution of N in Sn1−xFexO2. N doping at the oxygen site can be regarded as defect and introduces a hole in this system. As a result, a hole-induced ferromagnetism might be the origin of the observed ferromagnetism in Fe-N-codoped SnO2 samples.  相似文献   

17.
The microstructure and magnetic properties have been investigated systematically for Sn1−xMnxO2 polycrystalline powder samples with x=0.02-0.08 synthesized by a solid-state reaction method. X-ray diffraction revealed that all samples are pure rutile-type tetragonal phase and the cell parameters a and c decrease monotonously with the increase in Mn content, which indicated that Mn ions substitute into the lattice of SnO2. Magnetic measurements revealed that all samples exhibit room temperature ferromagnetism. Furthermore, magnetic investigations demonstrate that magnetic properties strongly depend on doping content, x. The average magnetic moment per Mn atom decreases with increase in the Mn content, because antiferromagnetic super-exchange interaction takes place within the neighbor Mn3+ ions through O2− ions for the samples with higher Mn doping. Our results indicate that the ferromagnetic property is intrinsic to the SnO2 system and is not a result of any secondary magnetic phase or cluster formation.  相似文献   

18.
This paper reports on the influence of the sintering temperature and atmosphere and transition-metal doping on the magnetic properties of nanocrystalline and bulk In2O3. Undoped nanocrystalline In2O3 is diamagnetic whatever the sintering temperature and atmosphere. All single-phase transition-metal-doped In2O3 samples are paramagnetic, with a paramagnetic effective moment originating from weakly interacting transition metal ions. No trace of ferromagnetism has been detected even with samples sintered under argon, except extrinsic ferromagnetism for samples with magnetic dopant concentrations exceeding the solubility limit.  相似文献   

19.
We report on room temperature ferromagnetism in C-doped ZnO thin films prepared by electron beam evaporation. Magnetization, Hall effect, X-ray photoemission spectroscopy (XPS) and X-ray diffraction studies have been conducted to investigate the source and nature of ferromagnetism in C-doped ZnO. The samples were observed to have n-type conduction with the carrier concentration increasing with C doping. XPS does not give any evidence for C substituted at the O site, and is more consistent with the formation of C-O bonds and with the presence of C primarily in the +4 state. It is suggested that the ferromagnetism originates in the development of Zn vacancies that are stabilized due to the incorporation of C in a high valence state (C4+).  相似文献   

20.
Electron paramagnetic resonance (EPR) investigations has been carried out on the new family of molybdenum doped vanadium sesquioxides (V1−xMox)2−δO3. The oxidation effects were monitored from the rate of paramagnetic V4+ created when the sample is exposed to the air. The effects of the oxidation time, sample temperature, and annealing at 1000 °C under a diluted hydrogen atmosphere on the EPR signal features are analyzed. The V4+ concentration in the oxidized samples is determined and the relaxation effects driven by the conduction electrons are pointed out from the thermal behaviour of the EPR line features. EPR spectra of all the oxidized samples also reveal a small ferromagnetic contribution strongly correlated with the V4+ content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号