首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The energy gaps of molecular-beam-epitaxy grown wurtzite-structure In1−xAlxN alloys with x≤0.25 have been measured by absorption and photoluminescence experiments. The results are consistent with the recent discovery of a narrow bandgap of ∼0.7 eV for InN. A bowing parameter of 3 eV was determined from the composition dependence of these bandgaps. Combined with previously reported data of InGaN and GaAlN, these results show a universal relationship between the bandgap variations of group-III nitride alloys and their compositions.  相似文献   

2.
Polycrystalline InxGa1−xN thin films were prepared by mixed source modified activated reactive evaporation (MARE) technique. The films were deposited at room temperature on glass substrates without any buffer layer. All the films crystallize in the hexagonal wurtzite structure. The indium concentration calculated from XRD peak shift using Vegard's law was found to be varying from 2% to 92%. The band gap varies from 1.72 eV to 3.2 eV for different indium compositions. The indium rich films have higher refractive indices as compared to the gallium rich films. The near infra-red absorption decreases with gallium incorporation into InN lattice which is mainly due to decrease in the free carrier concentration in the alloy system. This fact is further supported from Hall effect measurements. MARE turns out to be a promising technique to grow InxGa1−xN films over the entire composition range at room temperature.  相似文献   

3.
Semiconductor optoelectronic devices based on GaN and on InGaN or AlGaN alloys and superlattices can operate in a wide range of wavelengths, from far infrared to near ultraviolet region. The efficiency of these devices could be enhanced by shrinking the size and increasing the density of the semiconductor components. Nanostructured materials are natural candidates to fulfill these requirements. Here we use the density functional theory to study the electronic and structural properties of (10,0) GaN, AlN, AlxGa1 − xN nanotubes and GaN/AlxGa1 − xN heterojunctions, 0<x<1. The AlxGa1 − xN nanotubes exhibit direct band gaps for the whole range of Al compositions, with band gaps varying from 3.45 to 4.85 eV, and a negative band gap bowing coefficient of −0.14 eV. The GaN/AlxGa1 − xN nanotube heterojunctions show a type-I band alignment, with the valence band offsets showing a non-linear dependence with the Al content in the nanotube alloy. The results show the possibility of engineering the band gaps and band offsets of these III-nitrides nanotubes by alloying on the cation sites.  相似文献   

4.
Thin films of Se 100−xInx (x=10, 20 and 30 at%) have been prepared by the flash evaporation technique. The effect of the indium content on optical band gap of the Se100−x Inx films has been investigated by the optical characterization. The optical band gap values of the Se100−x Inx thin films were determined and are found to decrease with increasing indium content. This indium content changes the width of localized states in the optical band gaps of the thin films. It was found that the optical band gap, Eg, of the Se100−x Inx films changes from 1.78 to 1.37 eV with increasing indium content from 10 to 30 at%, while the width of localized states in optical band gap changes from 375 to 342 meV. The temperature dependence of the dark electrical conductivity were studied in the temperature range 303-433 K and revealed two activation energies providing two electrical conduction mechanisms. The activation energy of the Se100−x Inx films in the high temperature region changes from 0.49 to 0.32 eV with increasing indium content from 10 to 30 at%, while the hopping activation energy in the lower temperature region changes from 0.17 to 0.22 meV. The change in the electrical conductivity with time during the amorphous-to-crystalline transformation is recorded for amorphous Se100−xInx films at two points of isothermal temperatures 370 and 400 K. The formal crystallization theory of Avrami has been used to calculate the kinetic parameters of crystallization.  相似文献   

5.
Ga2(1−x)In2xO3 thin films with different indium content x [In/(Ga + In) atomic ratio] were prepared on α-Al2O3 (0 0 0 1) substrates by the metal organic chemical vapor deposition (MOCVD). The structural and optical properties of the Ga2(1−x)In2xO3 films were investigated in detail. Microstructure analysis revealed that the film deposited with composition x = 0.2 was polycrystalline structure and the sample prepared with x up to 0.8 exhibited single crystalline structure of In2O3. The optical band gap of the films varied with increasing Ga content from 3.72 to 4.58 eV. The average transmittance for the films in the visible range was over 90%.  相似文献   

6.
First-principles density-functional theory of Full-Potential Linear Augmented Plane Wave (FP-LAPW) within local density approximation (LDA) of the optical properties of ByAlxIn1−xyN systems (with x = 0.187 and y = 0.062, 0.125 and 0.187) has been performed. Substitutional atoms of Boron induced in small amounts into the (AlxIn1−x)-cationic sublattice of AlInN affects the energy gap of BAlInN. The higher band gap of Al0.375In0.625N alloy can form a useful quantum well (QW) laser structure. A best choice of B-content, ByAlxIn1−xyN could be an alternative to AlxIn1−xN. The results of accurate calculations of the band structures and optical properties show the better performance characteristics belong to the structure containing B-content (y) of 12.5%. The NaCl metallic ByAl0.1875In0.8125−yN has a direct character for y = 12.5%. The imaginary part of dielectric function, reflectivity, refractive index, absorption coefficient and optical conductivity are investigated well and provide reasonable results for optoelectronic devices applications.  相似文献   

7.
We report on the optical properties of high-Al-content crack free AlxGa1−xN (x<0.67) films grown by molecular-beam epitaxy on Si(111) substrates using ammonia as nitrogen source. The energetic position of the A free exciton as a function of the Al content is determined from photoluminescence and reflectivity measurements at low temperature. A bowing parameter of b=1 eV is deduced from these measurements. The excitonic linewidth increases as a function of Al concentration. The observed variation agrees very well with the one calculated using a model in which the broadening effect is assumed to be due to alloy compositional disordering.  相似文献   

8.
Using a spectroscopic ellipsometry, pseudodielectric functions 〈?〉 of InxAl1−xAs ternary alloy films (x = 0.43, 0.62, 0.75, and 1.00) from 0.74 to 6.48 eV were determined. Fast in-situ chemical etching to effectively remove surface overlayers using charge-coupled device detector and to avoid the reoxidation of the surface of films prior to the ellipsometric spectrum measurement was performed. At the high energy region, an additional critical point structure which is interpreted as the E′1 transition from the band structure calculation of the linear augmented Slater-type orbital method was reported.  相似文献   

9.
We have studied the conduction band profile and the intersubband transition energy, E12, of Al1−yInyN/Ga1−xInxN quantum well structures. We have considered how material parameters such as non-parabolicity and the uncertainty in the bowing parameter affect E12 and the corresponding wavelength, λ12. The calculations include strain and cover the transition range from telecommunication wavelengths (1.55 μm) to the mid-infrared (∼ 10 μm).  相似文献   

10.
Transmission and reflection measurements in the wavelength region 450-1100 nm were carried out on Tl4In3GaS8-layered single crystals. The analysis of the room temperature absorption data revealed the presence of both optical indirect and direct transitions with band gap energies of 2.32 and 2.52 eV, respectively. The rate of change of the indirect band gap with temperature dEgi/dT=-6.0×10−4 eV/K was determined from transmission measurements in the temperature range of 10-300 K. The absolute zero value of the band gap energy was obtained as Egi(0)=2.44 eV. The dispersion of the refractive index is discussed in terms of the Wemple-DiDomenico single-effective-oscillator model. The refractive index dispersion parameters: oscillator energy, dispersion energy, oscillator strength and zero-frequency refractive index were found to be 4.87 eV, 26.77 eV, 8.48×1013 m−2 and 2.55, respectively.  相似文献   

11.
Silver doped indium oxide (In2−x Agx O3−y) thin films have been prepared on glass and silicon substrates at room temperature (300 K) by reactive DC magnetron sputtering technique using an alloy target of pure indium and silver (80: 20 atomic %. The magnetron power (and hence the metal atom sputter flux) is varied in the range 40-80 W. The energy dispersive analysis of X-ray (EDAX) results show that the silver content in the film decreases with increasing magnetron power. The grain size of these films is of the order of 100 nm. The resistivity of these films is in the range 10−2-10−3 Ω cm. The work function of the silver-indium oxide films (by Kelvin Probe) are in the range: 4.64-4.55 eV. The refractive index of these films (at 632.8 nm) varies in the range: 1.141-1.195. The optical band gap of indium oxide (3.75 eV) shrinks with silver doping. Calculations of the partial ionic charge (by Sanderson's theory) show that silver doping in indium oxide thin films enhance the ionicity.  相似文献   

12.
The electrical conductivity σ, Hall effect RH, and thermoelectric power Q of CuGa0.25In0.75Se2 thin films with different growth conditions have been measured at temperature 300-520 K. These properties were also measured at room temperature for different composition of CuGaxIn1−xSe2 (0.75≥x≥0) deposited at the same evaporation conditions. All investigated films are p-type over the whole temperature range. Electrical conduction was studied in order to establish its mechanism.The room temperature photoelectric response of those films were measured as a function of wavelength (2.5≥λ≥0.3) μm. It is found that the energy gap values follow a second order equation in x giving a downward bowing parameter of about 0.31 eV.  相似文献   

13.
Modifications in the structural and optical properties of 100 MeV Ni7+ ions irradiated cobalt doped ZnO thin films (Zn1−xCoxO, x = 0.05) prepared by sol-gel route were studied. The films irradiated with a fluence of 1 × 1013 ions/cm2 were single phase and show improved crystalline structure with preferred C-axis orientation as revealed from XRD analysis. Effects of irradiation on bond structure of thin films were studied by FTIR spectroscopy. The spectrum shows no change in bonding structure of Zn-O after irradiation. Improved quality of films is further supported by FTIR studies. Optical properties of the pristine and irradiated samples have been determined by using UV-vis spectroscopic technique. Optical absorption spectra show an appreciable red shift in the band gap of irradiated Zn1−xCoxO thin film due to sp-d interaction between Co2+ ions and ZnO band electrons. Transmission spectra show absorption band edges at 1.8 eV, 2.05 eV and 2.18 eV corresponding to d-d transition of Co2+ ions in tetrahedral field of ZnO. The AFM study shows a slight increase in grain size and surface roughness of the thin films after irradiation.  相似文献   

14.
InxGa1−xN thin films with In concentration ranging from 25 to 34 at.% were deposited on sapphire substrate by metal-organic chemical vapor deposition (MOCVD). Crystalline structure and surface morphology of the deposited films were studied by using X-ray diffraction (XRD) and atomic force microscopy (AFM). Hardness, Young's modulus and creep resistance were measured using a nanoindenter. Among the deposited films, In0.25Ga0.75N film exhibits a larger grain size and a higher surface roughness. Results indicate that hardness decreases slightly with increasing In concentration in the InxGa1−xN films ranged from 16.6 ± 1.1 to 16.1 ± 0.7 GPa and, Young's modulus for the In0.25Ga0.75N, In0.3Ga0.7N and In0.34Ga0.66N films are 375.8 ± 23.1, 322.4 ± 13.5 and 373.9 ± 28.6 GPa, respectively. In addition, the time-dependent nanoindentation creep experiments are presented in this article.  相似文献   

15.
Bulk Ge20Se80−xTlx (x ranging from 0 to 15 at%) chalcogenide glasses were prepared by conventional melt quenching technique. Thin films of these compositions were prepared by thermal evaporation, on glass and Si wafer substrates at a base pressure of 10−6 Torr. X-ray diffraction studies were performed to investigate the structure of the thin films. The absence of any sharp peaks in the X-ray diffractogram confirms that the films are amorphous in nature. The optical constants (absorption coefficient, optical band gap, extinction coefficient and refractive index) of Ge20Se80−xTlx thin films are determined by absorption and reflectance measurements in a wavelength range of 400-900 nm. In order to determine the optical gap, the absorption spectra of films with different Tl contents were analyzed. The absorption data revealed the existence of allowed indirect transitions. The optical band gap showed a sharp decrease from 2.06 to 1.79 eV as the Tl content increased from 0% to 15%. It has been found that the values of absorption coefficient and refractive index increase while the extinction coefficient decreases with increase in Tl content in the Ge-Se system. These results are interpreted in terms of the change in concentration of localized states due to the shift in Fermi level. DC electrical conductivity of Ge20Se80−xTlx thin films was carried out in a temperature range 293-393 K. The electrical activation energy of these films was determined by investigating the temperature dependence of dc conductivity. A decrease in the electrical activation energy from 0.91 to 0.55 eV was observed as the Tl content was increased up to 15 at% in Ge20Se80−xTlx system. On the basis of pre-exponential factor, it is suggested that the conduction is due to thermally assisted tunneling of the carriers in the localized states near the band edges.  相似文献   

16.
The electronic and structural properties of zigzag aluminum nitride (AlN), gallium nitride (GaN) nanoribbons and AlxGa1−xN nanoribbon heterojunctions are investigated using the first-principles calculations. Both AlN and GaN ribbons are found to be semiconductor with an indirect band gap, which decreases monotonically with the increased ribbon width, and approaching to the gaps of their infinite two dimensional graphitic-like monolayer structures, respectively. Furthermore, the band gap of AlxGa1−xN nanoribbon heterojunctions is closely related to Al (and/or Ga) concentrations. The AlxGa1−xN nanoribbon of width n=8 shows a continuously band gap varying from about 2.2 eV-3.1 eV as x increases from 0 to 1. The large ranged tunable band gaps in such a quasi one dimension structure may open up new opportunities for these AlN/GaN based materials in future optoelectronic devices.  相似文献   

17.
First-principles calculations are applied to investigate the effect of biaxial strain on the band gap of wurtzite Al x Ga1−x N. The band gap and band gap bowing parameter increase with compressive strain and decrease with tensile strain. The strain-induced changes in the band gap of Al x Ga1−x N are linear in the strain range of about −1% to 1% while the linearity is invalid out of the range. The linear coefficient B(x), characterizing the relationship between the band gap and the biaxial stress, with a quadratic form is obtained. The value of the band gap bowing parameter decreases from 1.0 eV for −2% strain to 0.91 eV for unstrained and to 0.67 eV for 2% strain.  相似文献   

18.
A series of ZnO1−xSx alloy films (0 ≤ x ≤ 1) were grown on quartz substrates by radio-frequency (rf) magnetron sputtering of ZnS ceramic target, using oxygen and argon as working gas. X-ray diffraction measurement shows that the ZnO1−xSx films have wurtzite structure with (0 0 2) preferential orientation in O-rich side (0 ≤ x ≤ 0.23) and zinc blende structure with (1 1 1) preferential orientation in S-rich side (0.77 ≤ x ≤ 1). However, when the S content is in the range of 0.23 < x < 0.77, the ZnO1−xSx film consists of two phases of wurtzite and zinc blende or amorphous ZnO1−xSx phase. The band gap energy of the films shows non-linear dependence on the S content, with an optical bowing parameter of about 2.9 eV. The photoluminescence (PL) measurement reveals that the PL spectrum of the wurtzite ZnO1−xSx is dominated by visible band and its PL intensity and intensity ratio of UV to visible band decrease greatly compared with undoped ZnO. All as-grown ZnO1−xSx films behave insulating, but show n-type conductivity for w-ZnO1−xSx and maintain insulating properties for β-ZnO1−xSx after annealed. Mechanisms of effects of S on optical and electrical properties of the ZnO1−xSx alloy are discussed in the present work.  相似文献   

19.
Herein is a report of a study on a Cd1−xZnxS thin film grown on an ITO substrate using a chemical bath deposition technique. The as-deposited films were annealed in air at 400 °C for 30 min. The composition, surface morphology and structural properties of the as-deposited and annealed Cd1−xZnxS thin films were studied using EDX, SEM and X-ray diffraction techniques. The annealed films have been observed to possess a crystalline nature with a hexagonal structure. The optical absorption spectra were recorded within the range of 350-800 nm. The band gap of the as-deposited thin films varied from 2.46 to 2.62 eV, whereas in the annealed film these varied from 2.42 to 2.59 eV. The decreased band gap of the films after annealing was due to the improved crystalline nature of the material.  相似文献   

20.
Photocathode devices operating in reflection-mode, where the photoemission is detected on the same side as the light irradiation, were developed for the detection of deep ultraviolet light by using p-AlxGa1−xN films grown on Si(1 1 1) substrates. The external quantum efficiencies were as high as 20-15% at 200 nm and 280 nm, while the value was as low as 10−2% at 310 nm. The on-off ratio was more than four orders of magnitude, which represents high solar-blind sensitivity. The escape probability of AlxGa1−xN photocathode was decreased with increase of AlN mole fraction. The effective barrier potential against the photoelectron emission near the surface was reduced due to the upward shift of conduction band of AlxGa1−xN. The photoemission from the AlxGa1−xN films terminated with Cs-O adatoms will be discussed in terms of band diagrams that were evaluated by hard X-ray photoelectron spectroscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号