共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions of atomic and molecular hydrogen with perfect and deficient Cu2O(1 1 1) surfaces have been investigated by density functional theory. Different kinds of possible modes of H and H2 adsorbed on the Cu2O(1 1 1) surface and possible dissociation pathways were examined. The calculated results indicate that OSUF, CuCUS and Ovacancy sites are the adsorption active centers for H adsorbed on the Cu2O(1 1 1) surface, and for H2 adsorption over perfect surface, CuCUS site is the most advantageous position with the side-on type of H2. For H2 adsorption over deficient surface, two adsorption models of H2, H2 adsorbing perpendicularly over Ovacancy site and H2 lying flatly over singly-coordinate Cu-Cu short bridge, are typical of non-energy-barrier dissociative adsorption leading to one atomic H completely inserted into the crystal lattice and the other bounded to CuCUS atom, suggesting that the dissociative adsorption of H2 is the main dissociation pathway of H2 on the Cu2O(1 1 1) surface. Our calculation result is consistent with that of the experimental observation. Therefore, Cu2O(1 1 1) surface with oxygen vacancy exhibits a strong chemical reactivity towards the dissociation of H2. 相似文献
2.
Min LiJun-ying Zhang Yue ZhangGuo-feng Zhang Tian-min Wang 《Applied Surface Science》2011,257(24):10710-10714
First-principles calculation on the basis of the density functional theory (DFT) and generalized gradient approximation have been applied to study the adsorption of H2 on the stoichiometric O-terminated Cu2O (1 1 1), Cu2O (1 1 1)-CuCUS and Cu-terminated Cu2O (1 1 1) surfaces. The optimal adsorption position and orientation of H2 on the stoichiometric O-terminated Cu2O (1 1 1) surface and Cu-terminated Cu2O (1 1 1) surface were determined and electronic structural changes upon adsorption were investigated by calculating the Local Density of States (LDOS) of the CuCUS 3d and CuCUS 4s of stoichiometric O-terminated Cu2O (1 1 1) surface. These results showed that H2 molecule adsorption on CuCUS site parallel to stoichiometric O-terminated Cu2O (1 1 1) surface and H2 molecule adsorption on Cu2 site parallel to Cu-terminated Cu2O (1 1 1) surface were the most favored, respectively. The presence of surface copper vacancy has a little influence on the structures when H2 molecule adsorbs on CuCSA, OCUS and OCSA atoms and the H2 molecule is only very weakly bound to the Cu2O (1 1 1)-CuCUS surface. From the analysis of stoichiometric O-terminated Cu2O (1 1 1) Local Density of States, it is observed that CuCUS 3d orbital has moved to a lower energy and the sharp band of CuCUS 4s is delocalized when compared to that before H2 molecule adsorption, and overlapped substantially with bands due to adsorbed H2 molecule. The Mulliken charges of H2 adsorption on CuCUS site showed that H2 molecule obtained electron from CuCUS which was consistent with the calculated electronic structural changes upon H2 adsorption. 相似文献
3.
Density functional theory has been employed to investigate the adsorption and the dissociation of an N2O at different sites on perfect and defective Cu2O(1 1 1) surfaces. The calculations are performed on periodic systems using slab model. The Lewis acid site, CuCUS, and Lewis base site, OSUF are considered for adsorption. Adsorption energies and the energies of the dissociation reaction N2O → N2 + O(s) at different sites are calculated. The calculations show that adsorption of N2O is more favorable on CuCUS adsorption site energetically. CuCUS site exhibits a very high activity. The CuCUS-N2O reaction is exothermic with a reaction energy of 77.45 kJ mol−1 and an activation energy of 88.82 kJ mol−1, whereas the OSUF-N2O reaction is endothermic with a reaction energy of 205.21 kJ mol−1 and an activation energy of 256.19 kJ mol−1. The calculations for defective surface indicate that O vacancy cannot obviously improve the catalytic activity of Cu2O. 相似文献
4.
DFT calculations have been performed to investigate the effect of dielectric responses of the solvent environment on the CO adsorption over CuCl(1 1 1) surface by using COSMO (conductor-like solvent model) model in Dmol3. Different dielectric constants, including vacuum, liquid paraffin, methylene chloride, methanol and water solution, are considered. The effects of solvent model on the structural parameters, adsorption energies and vibrational frequency of CO adsorption over CuCl(1 1 1) surface have been investigated. The calculation results suggest that solvent effects can improve the stability of CO adsorption and reduce the intensity of C-O bond, which might mean that solvent is in favor of C-O bond activation and improve the reaction activity of oxidative carbonylation in a slurry reactor. 相似文献
5.
Riguang ZhangHongyan Liu Huayan ZhengLixia Ling Zhong LiBaojun Wang 《Applied Surface Science》2011,257(11):4787-4794
The adsorption and dissociation of O2 on the perfect and oxygen-deficient Cu2O(1 1 1) surface have been systematically studied using periodic density functional calculations. Different kinds of possible modes of atomic O and molecular O2 adsorbed on the Cu2O(1 1 1) surface are identified: atomic O is found to prefer threefold 3Cu site on the perfect surface and Ovacancy site on the deficient surface, respectively. CuCUS is the most advantageous site with molecularly adsorbed O2 lying flatly over singly coordinate CuCUS-CuCSA bridge on the perfect surface. O2 adsorbed dissociatively on the deficient surface, which is the main dissociation pathway of O2, and a small quantity of molecularly adsorbed O2 has been obtained. Further, possible dissociation pathways of molecularly adsorbed O2 on the Cu2O(1 1 1) surface are explored, the reaction energies and relevant barriers show that a small quantity of molecularly adsorbed O2 dissociation into two O atoms on the deficient surface is favorable both thermodynamically and kinetically in comparison with the dissociation of O2 on the perfect surface. The calculated results suggest that the presence of oxygen vacancy exhibits a strong chemical reactivity towards the dissociation of O2 and can obviously improve the catalytic activity of Cu2O, which is in agreement with the experimental observation. 相似文献
6.
The dehydrogenation of CH4 on the Co(1 1 1) surface is studied using density functional theory calculation (DFT). It is found that CH4 is favored to dissociate to CH3 and then transforms to CH2 and CH by sequential dehydrogenation, and CH4 activation into CH3 and H is the rate-determining step on the Co(1 1 1) surface. CH2 is quite unstable on Co(1 1 1) surface. CH dehydrogenation into C and H is difficult. CH3 and H prefer to adsorb on 3-fold hollow hcp and fcc sites, and CH2, CH and C prefer to adsorb on hcp sites. 相似文献
7.
Density functional theory (DFT) combined with conductor-like solvent model (COSMO) have been performed to study the solvent effects of H2 adsorption on Cu(h k l) surface. The result shows H2 can not be parallel adsorbed on Cu(h k l) surface in gas phase and only vertical adsorbed. At this moment, the binding energies are small and H2 orientation with respect to Cu(h k l) surfaces is not a determining parameter. In liquid paraffin, when H2 adsorbs vertically on Cu(h k l) surface, solvent effects not only influences the adsorptive stability, but also improves the ability of H2 activation; When H2 vertical adsorption on Cu(h k l) surface at 1/4 and 1/2 coverage, H-H bond is broken by solvent effects. However, no stable structures at 3/4 and 1 ML coverage are found, indicating that it is impossible to get H2 parallel adsorption on Cu(h k l) surfaces at 3/4 and 1 ML coverages due to the repulsion between adsorbed H2 molecules. 相似文献
8.
S. Funk 《Applied Surface Science》2007,253(17):7108-7114
We attempt to correlate qualitatively the surface structure with the chemical activity for a metal surface, Cr(1 1 0), and one of its surface oxides, Cr2O3(0 0 0 1)/Cr(1 1 0). The kinetics and dynamics of CO2 adsorption have been studied by low energy electron diffraction (LEED), Aug er electron spectroscopy (AES), and thermal desorption spectroscopy (TDS), as well as adsorption probability measurements conducted for impact energies of Ei = 0.1-1.1 eV and adsorption temperatures of Ts = 92-135 K. The Cr(1 1 0) surface is characterized by a square shaped LEED pattern, contamination free Cr AES, and a single dominant TDS peak (binding energy Ed = 33.3 kJ/mol, first order pre-exponential 1 × 1013 s−1). The oxide exhibits a hexagonal shaped LEED pattern, Cr AES with an additional O-line, and two TDS peaks (Ed = 39.5 and 30.5 kJ/mol). The initial adsorption probability, S0, is independent of Ts for both systems and decreases exponentially from 0.69 to 0.22 for Cr(1 1 0) with increasing Ei, with S0 smaller by ∼0.15 for the surface oxide. The coverage dependence of the adsorption probability, S(Θ), at low Ei is approx. independent of coverage (Kisliuk-shape) and increases initially at large Ei with coverage (adsorbate-assisted adsorption). CO2 physisorbs on both systems and the adsorption is non-activated and precursor mediated. Monte Carlo simulations (MCS) have been used to parameterize the beam scattering data. The coverage dependence of Ed has been obtained by means of a Redhead analysis of the TDS curves. 相似文献
9.
A density functional theory study on the adsorption of CO and O2 on Cu-terminated Cu2O (111) surface 下载免费PDF全文
The adsorptions of CO and 02 molecules individually on the stoichiometric Cu-terminatcd Cu20 (111) surface are investigated by first-principles calculations on the basis of the density functional theory. The calculated results indicate that the CO molecule preferably coordinates to the Cu2 site through its C atom with an adsorption energy of-1.69 eV, whereas the 02 molecule is most stably adsorbed in a tilt type with one O atom coordinating to the Cu2 site and the other O atom coordinating to the Cul site, and has an adsorption energy of -1.97 eV. From the analysis of density of states, it is observed that Cu 3d transfers electrons to 2π orbital of the CO molecule and the highest occupied 5σ orbital of the CO molecule transfers electrons to the substrate. The sharp band of Cu 4s is delocalized when compared to that before the CO molecule adsorption, and overlaps substantially with bands of the adsorbed CO molecule. There is a broadening of the 2π orbital of the 02 molecule because of its overlapping with the Cu 3d orbital, indicating that strong 3d-2π interactions are involved in the chemisorption of the 02 molecule on the surface. 相似文献
10.
E. Bostandoust Nik 《Applied Surface Science》2010,256(12):3795-10328
A quantum modeling of the CO adsorption on illuminated anatase TiO2 (0 0 1) is presented. The calculated adsorption energy and geometries of illuminated case are compared with the ground state case. The calculations were achieved by using DFT formalism and the BH and HLYP. Upon photoexcitation, an electron-hole pair is generated. Comparing of natural population in the ground state and the exited state, shows that an electron is trapped in a Ti4+ ion and a hole is localized in an oxygen ion. The photoelectron helps generation of a CO2 molecule on the TiO2 surface. As shown by optimization of these systems, the CO molecule adsorbed vertically on the TiO2 (0 0 1) surface in the ground state case while the CO molecule made an angle of 134.3° to this surface at the excited state case. Based on the here used model the obtained adsorption energy was 0.36 eV which is in excellent agreement with the reported experimental value. In the present work the C-O stretch IR frequencies are calculated which are 1366.53 and 1423.16 cm−1. These results are in good agreement with the earlier reported works for the surface carbonaceous compounds, and oxygenated carbon species. 相似文献
11.
Low-energy electron diffraction, X-ray photoelectron spectroscopy and synchrotron-radiation-excited angle-resolved photoelectron spectroscopy have been used to characterize Cu-oxide overlayers on the Zn-terminated ZnO(0 0 0 1) surface. Deposition of Cu on the ZnO(0 0 0 1)-Zn surface results in the formation of Cu clusters with (1 1 1) top terraces. Oxidation of these clusters by annealing at 650 K in O2 atmosphere (1.3 × 10−4 Pa) leads to an ordered Cu2O overlayer with (1 1 1) orientation. Good crystallinity of the Cu2O(1 1 1) overlayer is proved by energy dispersion of one of Cu2O valence bands. The Cu2O(1 1 1) film exhibits a strong p-type semiconducting nature with the valence band maximum (VBM) of 0.1 eV below the Fermi level. The VBM of ZnO at the Cu2O(1 1 1)/ZnO(0 0 0 1)-Zn interface is estimated to be 2.4 eV, yielding the valence-band offset of 2.3 eV. 相似文献
12.
Zhang RiguangLiu Hongyan Ling LixiaLi Zhong Wang Baojun 《Applied Surface Science》2011,257(9):4232-4238
The formation mechanism of CH3O by the adsorption and decomposition of CH3OH on clean and oxygen-precovered Cu2O(1 1 1) surface has been investigated with density functional theory method together with the periodic slab models. Two possible formation pathways of CH3O by CH3OH decomposition on oxygen-precovered (Opre) Cu2O(1 1 1) surface were proposed and discussed. One is the O-H bond-cleavage of CH3OH with H migration to Opre to form CH3O; the other is the C-O bond-scission of CH3OH with CH3 migration to Opre leading to CH3Opre. The calculated results show that the O-H bond-breaking path has the lowest activation barrier 26.8 kJ mol−1, the presence of oxygen-precovered on Cu2O(1 1 1) surface exhibits a high surface reactivity toward the formation of CH3O by the O-H bond-cleavage of CH3OH, and reduce the activation barrier of O-H bond-cleavage. The C-O bond-breaking path was inhibited by dynamics, suggesting that the O atom of CH3O is not from the oxygen-precovered, but comes from the O of CH3OH. Meanwhile, the calculated results give a clear illustration about the formation mechanism of CH3O in the presence of oxygen and the role of oxygen at the microscopic level. 相似文献
13.
Ethylene adsorption was studied by use of DFT/B3LYP with basis set 6-31G(d,p) in Gaussian’03 software. It was found that ethylene has adsorbed molecularly on all clusters with π adsorption mode. Relative energy values were calculated to be −50.86 kcal/mol, −20.48 kcal/mol, −32.44 kcal/mol and −39.27 kcal/mol for Ni13 nanocluster, Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) surface cluster models, respectively. Ethylene adsorption energy is inversely proportional to Ni coordination number when Ni10(1 1 1), Ni13(1 0 0) and Ni10(1 1 0) cluster models and Ni13 nanocluster are compared with each other. 相似文献
14.
The adsorption and dissociation of O2 on CuCl(1 1 1) surface have been systematically studied by the density functional theory (DFT) slab calculations. Different kinds of possible modes of atomic O and molecular O2 adsorbed on CuCl(1 1 1) surface and possible dissociation pathways are identified, and the optimized geometry, adsorption energy, vibrational frequency and Mulliken charge are obtained. The calculated results show that the favorable adsorption occurs at hollow site for O atom, and molecular O2 lying flatly on the surface with one O atom binding with top Cu atom is the most stable adsorption configuration. The O-O stretching vibrational frequencies are significantly red-shifted, and the charges transferred from CuCl to oxygen. Upon O2 adsorption, the oxygen species adsorbed on CuCl(1 1 1) surface mainly shows the characteristic of the superoxo (O2−), which primarily contributes to improving the catalytic activity of CuCl, meanwhile, a small quantity of O2 dissociation into atomic O also occur, which need to overcome very large activation barrier. Our results can provide some microscopic information for the catalytic mechanism of DMC synthesis over CuCl catalyst from oxidative carbonylation of methanol. 相似文献
15.
E.A. GonzálezP.V. Jasen M. SandovalP. Bechthold A. Juan B. Setina BaticMonika Jenko 《Applied Surface Science》2011,257(15):6878-6883
The adsorption of atomic Se on a Fe(1 1 0) surface is examined using the density functional theory (DFT). Selenium is adsorbed in high-symmetry adsorption sites: the -short and long-bridge, and atop sites at 1/2, 1/4, and 1 monolayer (ML) coverages. The long bridge (LB) site is found to be the most stable, followed by the short bridge (SB) and top sites (T). The following overlayer structures were examined, p(2 × 2), c(2 × 2), and p(1 × 1), which correspond to 1/4 ML, 1/2 ML, and 1 ML respectively. Adsorption energy is −5.23 eV at 1/4 ML. Se adsorption results in surface reconstruction, being more extensive for adsorption in the long bridge site at 1/2 ML, with vertical displacements between +8.63 and −6.69% -with regard to the original Fe position-, affecting the 1st and 2nd neighbours. The largest displacement in x or y-directions was determined to be 0.011, 0.030, and 0.021 Å for atop and bridge sites. Comparisons between Se-adsorbed and pure Fe surfaces revealed reductions in the magnetic moments of surface-layer Fe atoms in the vicinity of the Se. At the long bridge site, the presence of Se causes a decrease in the surface Fe d-orbital density of states between 4 and 5 eV below Fermi level. The density of states present a contribution of Se states at −3.1 eV and −12.9 eV. stabilized after adsorption. The Fe-Fe overlap population decrease and a Fe-Se bond are formed at the expense of the metallic bond. 相似文献
16.
E. Germán 《Applied Surface Science》2010,256(21):6237-6245
In this work we analyzed the geometry and the chemical interactions for c-C5H8 adsorption on Ge (0 0 1), using density functional theory calculations (DFT). We examined the changes in the atomic interactions using a slab model. We considered two cases, the cyclopentene adsorption on Ge(0 0 1) and on dimer vacancies on the surface. We found an average distance H-Ge, -C-Ge and C-Ge of 1.50, 1.70 and 1.65 Å, respectively, on dimer vacancies; and an average C-Ge distance of 2.05 Å on Ge-Ge dimer. We also computed the density of states (DOS) and the DOS weighted overlap populations (OPDOS) corresponding to C-C, C-Ge, C-H, and Ge-Ge bonds. During adsorption the main contribution are the CC double bond in both cases, and the next C and the H's belonging to this bonds in the case of adsorption on dimer vacancies. The orbital contribution includes participation of the 2py and 2pz orbitals corresponding to unsaturated C atoms, 2pz corresponding to side saturated C, and the 4p orbitals of Ge for the adsorption on dimer vacancies; 2s and 2pz orbitals corresponding to double bond C atoms, 4s and 4pz orbitals of Ge for the adsorption on Ge(0 0 1). 相似文献
17.
M. Abu Haija Y. Romanyshyn H. Kuhlenbeck T.K. Todorova J. Döbler H.-J. Freund 《Surface science》2006,600(7):1497-1503
Well ordered V2O3(0 0 0 1) films were prepared on Au(1 1 1) and W(1 1 0) substrates. These films are terminated by a layer of vanadyl groups under typical UHV conditions. Reduction by electron bombardment may remove the oxygen atoms of the vanadyl layer, leading to a surface terminated by vanadium atoms. The interaction of oxygen with the reduced V2O3(0 0 0 1) surface has been studied in the temperature range from 80 to 610 K. Thermal desorption spectroscopy (TDS), infrared reflection absorption spectroscopy (IRAS), high resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) were used to study the adsorbed oxygen species. Low temperature adsorption of oxygen on reduced V2O3(0 0 0 1) occurs both dissociatively and molecularly. At 90 K a negatively charged molecular oxygen species is observed. Upon annealing the adsorbed oxygen species dissociates, re-oxidizing the reduced surface by the formation of vanadyl species. Density functional theory was employed to calculate the structure and the vibrational frequencies of the O2 species on the surface. Using both cluster and periodic models, the surface species could be identified as η2-peroxo () lying flat on surface, bonded to the surface vanadium atoms. Although the O-O vibrational normal mode involves motions almost parallel to the surface, it can be detected by infrared spectroscopy because it is connected with a change of the dipole moment perpendicular to the surface. 相似文献
18.
Lihui SunJifan Hu Feng GaoYongjia Zhang Hongwei Qin 《Physica B: Condensed Matter》2011,406(21):4105-4108
The adsorption of NO molecule on the LaFeO3 (0 1 0) surface was studied using first-principle calculations based on density functional theory. The calculated results indicate that the Fe-top site is the most favorable for NO adsorption. The N-O bond length, Mulliken charge, and the N-O vibration frequency of the NO molecule are discussed after adsorption. The analysis results of the density of the states show that when NO is adsorbed with the Fe-NO configuration, the bonding mechanism is mainly from the interaction between the NO and the Fe d orbit. 相似文献
19.
The adsorption properties of CO on experimentally verified stepped Pt3Sn(1 0 2) surface were investigated using quantum mechanical calculations. The two possible terminations of Pt3Sn(1 0 2) were generated and on these terminations all types of possible adsorption sites were determined. The adsorption energies and geometries of the CO molecule for all those sites were calculated. The most favorable sites for adsorption were determined as the short bridge site on the terrace of pure-Pt row of the mixed-atom-ending termination, atop site at the step-edge of the pure row of pure-Pt-ending termination and atop site at the step-edge of the pure-Pt row of the mixed-atom-ending termination. The results were compared with those for similar sites on the flat Pt3Sn(1 1 0) surface considering the fact that Pt3Sn(1 0 2) has terraces with (1 1 0) orientation. The LDOS analysis of bare sites clearly shows that there are significant differences between the electronic properties of Pt atoms at stepped Pt3Sn(1 0 2) surface and the electronic properties of Pt atoms at flat (1 1 0) surface, which leads to changes in the CO bonding energies of these Pt atoms. Adsorption on Pt3Sn(1 0 2) surface is in general stronger compared to that on Pt3Sn(1 1 0) surface. The difference in adsorption strength of similar sites on these two surface terminations is a result of stepped structure of Pt3Sn(1 0 2). The local density of states (LDOS) of the adsorbent Pt and C of adsorbed CO was utilized. The LDOS of the surface metal atoms with CO-adsorbed atop and of their bare state were compared to see the effect of CO chemisorption on the electron density distribution of the corresponding Pt atom. The downward shift in energy peak in the LDOS curves as well as changes in the electron densities of the corresponding energy levels indicate the orbital mixing between CO molecular orbitals and metal d-states. The present study showed that the adsorption strength of the sites has a direct relation with their LDOS profiles. 相似文献
20.
Adsorption probability measurements (molecular beam scattering) have been conducted to examine the adsorption dynamics (i.e. the gas-surface energy transfer processes) of CO2 adsorption on the Zn-on-Cu(1 1 0) bimetallic system. The results indicate surface alloy formation, which is in agreement with prior studies. Depositing Zn at 300 K on Cu(1 1 0), above the condensation temperature of CO2, leads to a “blocking” of CO2 adsorption sites by Zn which is incorporated in the Cu(1 1 0) surface. This apparent site blocking effect indicates a lowering of the CO2 binding energy on the alloyed surface as compared with the clean Cu(1 1 0) support. The Zn coverage has been calibrated by Auger electron spectroscopy and thermal desorption spectroscopy. 相似文献