首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The use of intraocular lenses (IOLs) is the most promising method to restore vision after cataract surgery. Several new materials, techniques, and patterns have been studied for forming and etching IOLs to improve their optical properties and reduce diffractive aberrations. This study is aimed at investigating the use of ultrashort laser pulses to ablate the surface of PMMA and intraocular lenses, and thus provide an alternative to conventional techniques. Ablation experiments were conducted using various polymer substrates (PMMA samples, hydrophobic acrylic IOL, yellow azo dye doped IOL, and hydrophilic acrylic IOL consist of 25% H2O). The irradiation was performed using 100 fs pulses of 800 nm radiation from a regeneratively amplified Ti:sapphire laser system. We investigated the ablation efficiency and the phenomenology of the ablated patterns by probing the ablation depth using a profilometer. The surface modification was examined using a high resolution optical microscope (IOLs) or atomic force microscope—AFM (PMMA samples). It was found that different polymers exhibited different ablation characteristics, a result that we attribute to the differing optical properties of the materials. In particular, it was observed that the topography of the ablation tracks created on the hydrophilic intraocular lenses was smoother in comparison to those created on the PMMA and hydrophobic lens. The yellow doped hydrophobic intraocular lenses show higher ablation efficiency than undoped hydrophobic acrylic lenses.  相似文献   

2.
Femtosecond pulsed laser ablation (τ = 120 fs, λ = 800 nm, repetition rate = 1 kHz) of thin diamond-like carbon (DLC) films on silicon was conducted in air using a direct focusing technique for estimating ablation threshold and investigating the influence of ablation parameter on the morphological features of ablated regions. The single-pulse ablation threshold estimated by two different methods were ?th(1) = 2.43 and 2.51 J/cm2. The morphological changes were evaluated by means of scanning electron microscopy. A comparison with picosecond pulsed laser ablation shows lower threshold and reduced collateral thermal damage.  相似文献   

3.
Femtosecond laser ablation of aluminum oxide (Al2O3) and aluminum nitride (AlN) ceramics was performed under normal atmospheric conditions (λ = 785 nm, τp = 185 fs, repetition rate = 1 kHz), and threshold laser fluencies for single- and multi-pulse ablation were determined. The ablation characteristics of the two ceramics showed similar trends except for surface morphologies, which revealed virtually no melting in Al2O3 but clear evidence of melting for AlN. Based on subsequent X-ray photoelectron spectroscopy (XPS) analyses, the chemistry of these ceramics appeared to remain the same before and after femtosecond laser ablation.  相似文献   

4.
Nanoparticles (NPs) were produced by ablating tungsten and boron-carbide (B4C) target materials in atmospheric pressure nitrogen ambient using ArF excimer laser pulses. The size distributions of the NPs formed during the ablation were monitored—within a 7-133 nm size window—by a condensation particle counter connected to a differential mobility analyzer. The laser repetition rate was varied between 1-50 Hz, and the fluence was systematically changed in the range of 0.5-15 J/cm2, for both materials, allowing a comparative study in an extended laser parameter regime. The multishot ablation threshold (Φth) of B4C was determined to be ∼1.9 J/cm2 for the laser used (ArF excimer, λ = 193 nm). Similarly to earlier studies, it was shown that the size distributions consist of mainly small nanoparticles (<∼20 nm) attributed to a non-thermal ablation mechanism below Φth. An additional broad peak appears (between 20 and 40 nm) above Φth as a consequence of the thermally induced macroscopic ablation. Chemical composition of deposited polydisperse nanoparticles was studied by X-ray photoelectron spectroscopy showing nitrogen incorporation into the boron-carbide.  相似文献   

5.
Feng Rao  Yong-Ji Liu 《Optik》2011,122(11):991-995
Eye model is firstly used to design and assess the performance of intraocular lenses (IOLs) with extended depth of focus (DOF), including aspherical IOL, refractive multifocal IOL and diffractive multifocal IOL. The details of design and optimization are given, and the optical performance of the pseudophakic eye with the designed IOLs is assessed with the spot diagram and the visual acuity. For the pseudophakic eye with 3 mm pupil, when the spherical aberration is fully corrected by the aspherical IOL, the best visual acuity reaches 1.2 with a DOF of only 1.4D. Whereas when the spherical aberration is 0.4λ, the best visual acuity is 0.9 with a DOF as much as 2.2D. With the implantation of refractive or diffractive multifocal IOL, the pseudophakic eye has fairly good distant and near vision, while the intermediate vision is worse. Diffractive multifocal IOL diverts 81% of the input light to two primary focuses equally, with the additional 19% of the light wasted as higher order diffraction. Refractive multifocal IOL diverts all the light to two focuses but the light distribution varies with the pupil diameter.  相似文献   

6.
Poly(dimethylsiloxane) (PDMS) has been irradiated with a frequency quadrupled Nd:YAG laser and a KrF*-excimer laser at a repetition rate of 1 Hz. The analysis of ablation depth versus pulse number data reveals a pronounced incubation behavior. The thresholds of ablation (266 nm: 210 mJ cm−2, 248 nm: 940 mJ cm−2) and the corresponding effective absorption coefficients αeff (266 nm: 48900 cm−1, 248 nm: 32700 cm−1, αlin = 2 cm−1) were determined. The significant differences in the ablation thresholds for both irradiation wavelengths are probably due to the different pulse lengths of both lasers. Since the shorter pulse length yields a lower ablation threshold, the observed incubation can be due to a thermally induced and/or a multi-photon absorption processes of the material or impurities in the polymer.Incubation of polymers is normally related to changes of the chemical structure of the polymer. In the case of PDMS, incubation is associated with local chemical transformations up to several hundred micrometers below the polymer surface. It is possible to study these local chemical transformations by confocal Raman microscopy, because PDMS is transparent in the visible. The domains of transformation consist of carbon and silicon, as indicated by the appearance of the carbon D- and G-bands between 1310 and 1610 cm−1, a band appearing between 502 and 520 cm−1 can be assigned to mono- and/or polycrystalline silicon.The ablation products, which are detected in the surroundings of the ablation crater consist of carbon and amorphous SiOx (x ≈ 1.5) as detected by infrared spectroscopy.  相似文献   

7.
Laser fluence, repetition rate and pulse duration effects on paint ablation   总被引:1,自引:0,他引:1  
The efficiency (mm3/(J pulse)) of laser ablation of paint was investigated with nanosecond pulsed Nd:YAG lasers (λ = 532 nm) as a function of the following laser beam parameters: pulse repetition rate (1-10,000 Hz), laser fluence (0.1-5 J/cm2) and pulse duration (5 ns and 100 ns). In our study, the best ablation efficiency (η ≅ 0.3 mm3/J) was obtained with the highest repetition rate (10 kHz) at the fluence F = 1.5 J/cm2. This ablation efficiency can be associated with heat accumulation at high repetition rate, which leads to the ablation threshold decrease. Despite the low thermal diffusivity and the low optical absorption of the paint (thermal confinement regime), the ablation threshold fluence was found to depend on the pulse duration. At high laser fluence, the ablation efficiency was lower for 5 ns pulse duration than for the one of 100 ns. This difference in efficiency is probably due to a high absorption of the laser beam by the ejected matter or the plasma at high laser intensity. Accumulation of particles at high repetition rate laser ablation and surface shielding was studied by high speed imaging.  相似文献   

8.
ObjectiveSurface roughness parameters of various intraocular lenses (IOLs) biomaterials using atomic force microscopy (AFM) are compared. Variation, if any, in the micro-roughness properties of different IOLs made up of the same biomaterial is also explored. Retrospective analysis of posterior capsular opacification (PCO) incidence has been followed up for a period of four years post IOL implantation to evaluate the correlation of PCO formation with surface roughness of IOLs.DesignExperimental materials study.Materials and participantsSurface characteristics of 20 different IOL models were assessed using AFM. These IOL models were made up of PMMA or HEMA or acrylic hydrophobic or acrylic hydrophilic or silicone. Retrospective analysis of PCO incidence in 3629 eyes of 2656 patients implanted with the same IOL models was performed.MethodsTopological characteristics of 20 different IOLs made up of 5 different biomaterials including (i) PMMA, (ii) HEMA, (iii) acrylic hydrophobic, (iv) acrylic hydrophilic and (v) silicone were evaluated using AFM in the tapping mode. Images were acquired with a resolution of 256 × 256 data points per scan at a scan rate of 0.5 Hz per line and a scan size of 10 × 10 μm. Rate of PCO formation in 3629 eyes of 2656 patients implanted with the five different IOL biomaterials was retrospectively analyzed.ResultsAFM images of IOL optic surfaces showed a collection of pores, grooves, ridges and surface irregularities. Surface roughness parameters of the IOL optics were significantly different on comparing lenses of different materials. Acrylic hydrophobic IOLs had minimum surface roughness while acrylic hydrophilic IOLs showed the highest surface roughness. Different IOL models of the same biomaterial showed varied topological roughness characteristics. Retrospective analyses of PCO formation rate after IOL implantation was carried out, which revealed that rate of PCO incidence, was directly proportional to the increase in surface micro-roughness of IOLs.ConclusionsAFM is a powerful technique for the topological characterization of IOLs. Acrylic hydrophobic IOLs showed minimum surface roughness properties as well as minimum PCO incidence over a period of four years post implantation. It is, therefore, tempting to consider acrylic hydrophobic IOLs over other IOL biomaterials as the ideal biocompatible material for lowering PCO incidence. These results suggest an urgent need for manufacturers to optimize the various steps involved in the fabrication of IOLs.  相似文献   

9.
Ablation process of 1 kHz rate femtosecond lasers (pulse duration 148 fs, wavelength 775 nm) with Au films on silica substrates has been systemically studied. The single-pulse threshold can be obtained directly. For the multiple pulses the ablation threshold varies with the number of pulses applied to the surface due to the incubation effect. From the plot of accumulated laser fluence N × ?th(N) and the number of laser pulses N, incubation coefficient of Au film can be obtained (s = 0.765). As the pulse energy is increased, the single pulse ablation rate is increasing following two ablation logarithmic regimes, which can be explained by previous research.  相似文献   

10.
We studied the influence of porous Al2O3 substrates on Ce-stabilized ZrO2-doped hydroxyapatite thin films morphology pulsed laser deposited on their top. The porosities of substrates were monitored by changing sintering temperatures and measured with a high pressure Hg porosimeter.The depositions were conducted in 50 Pa water vapors by multipulse ablation of the targets with an UV KrF* (λ = 248 nm, τ ∼ 25 ns) excimer laser. The surface morphology of synthesized nanostructures was investigated by scanning electron microscopy and atomic force microcopy. Ca/P ratio within the range 1.67-1.70 was found for hydroxyapatite coatings by energy dispersive spectroscopy.The films were further seeded with mesenchymal stem cells for in vitro tests. The cells showed good attachment and spreading uniformly covering the entire surface of samples. The complexity of film morphology which is increasing with substrate porosity was shown to have a positive influence on cultivated cells density.  相似文献   

11.
Polyethersulfone (PES) films were processed with KrF laser irradiation of different pulse durations (τ). Scanning electron microscopy (SEM) and Raman spectroscopy were employed for the examination of the morphology and chemical composition of the irradiated surfaces, respectively. During ablation with 500 fs and 5 ps pulses, localized deformations (beads), micro-ripple and conical structures were observed on the surface depending on the irradiation fluence (F) and the number of pulses (N). In addition, the number density of the structures is affected by the irradiation parameters (τ, F, N). Furthermore, at longer pulse durations (τ = 30 ns), conical structures appear at lower laser fluence values, which are converted into columnar structures upon irradiation at higher fluences. The Raman spectra collected from the top of the structures following irradiation at different pulse durations revealed graphitization of the ns laser treated areas, in contrast to those processed with ultra-short laser pulses.  相似文献   

12.
Laser ablation of titanium in vacuum was performed using single- and dual-pulse regime in order to study crater formation. Crater profiles were analyzed by optical microscopy. It was found that the repetition-rate plays an important role in a process of laser ablation. The drilling is most effective for the highest repetition-rate. For the same total number of laser pulses clear drilling enhancement was achieved by dual-pulse regime of ablation in comparison to single-pulse regime. The strongest ablation rate in dual-pulse regime was achieved for the delay time between the pulses τ = 370 ns. Results are discussed in terms of decreased ablation threshold due to continuous heating of the target during the experiment.  相似文献   

13.
Effect of citric acid (CA) on microstructure and photoelectrochemical properties of WO3 films prepared by the polymeric precursor method was investigated. The obtained materials were characterized by means of X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The results showed that samples prepared with adding different amounts of citric acid had a pure phase of cubic. The addition of citric acid could significantly increase the particle size and change the surface of WO3 films. The photoelectrochemical measurements were performed using a standard three-electrode system cell. The films prepared from mass ratios of CA/PEG (R = 0, 0.2, 0.4, 0.6 and 1) showed 1.0, 1.4, 1.7, 2.1 and 0.9 mA cm−2 at 1.2 V under illumination with a 500 W xenon lamp (I0 = 100 mW/cm2), respectively.  相似文献   

14.
In this work we report on pulsed laser deposition (PLD) of chalcogenide thin films from the systems (AsSe)100−xAgIx and (AsSe)100−xAgx for sensing applications. A KrF* excimer laser (λ = 248 nm; τFWHM = 25 ns) was used to ablate the targets that had been prepared from the synthesised chalcogenide materials. The films were deposited in either vacuum (4 × 10−4 Pa) or argon (5 Pa) on silicon and glass substrates kept at room temperature. The basic properties of the films, including their morphology, topography, structure, and composition were characterised by complementary techniques. Investigations by X-ray diffraction (XRD) confirmed the amorphous nature of the films, as no strong diffraction reflections were found. The film composition was studied by energy dispersive X-ray (EDX) spectroscopy. The morphology of the films investigated by scanning electron microscopy (SEM), revealed a particulate-covered homogeneous surface, typical of PLD. Topographical analyses by atomic force microscopy (AFM) showed that the particulate size was slightly larger in Ar than in vacuum. The uniform surface areas were rather smooth, with root mean square (rms) roughness increasing up to several nanometers with the AgI or Ag doping. Based upon the results from the comprehensive investigation of the basic properties of the chalcogenide films prepared by PLD and their dependence on the process parameters, samples with appropriate sorption properties can be selected for possible applications in cantilever gas sensors.  相似文献   

15.
In this work, GaMnAs alloy materials were deposited on 7059 Corning glass and GaAs (1 0 0) substrates via RF magnetron sputtering technique. A concentration of Mn about 0.28 was obtained by Energy Dispersive X-ray spectroscopy. The substrate temperature was changed from 440 to 520 °C and layer thicknesses between 172 and 514 nm were obtained. Characterization by atomic force microscopy and X-ray diffraction were performed to determinate surface morphology and crystal structure, respectively. From transmittance spectral measurements we were able to determine optical constants: band gap energy (Eg), absorption coefficient (α), and refraction index (n). A correlation between morphological properties and substrate type was also studied. Diluted magnetic semiconductors like GaMnAs are considered among promising materials for the development of new spin-electronic devices.  相似文献   

16.
We report on the synthesis by pulsed laser deposition with a KrF* excimer laser source (λ = 248 nm, τ = 25 ns) of bioglass thin films of 6P57 and 6P61 types. Physiology, viability, and proliferation of human osteoblast cells were determined by quantitative in vitro tests performed by flow cytometry on primary osteoblasts cultured on pulsed laser deposited bioglasses. Both types of glass films proved to be appropriate mediums for cell survival and proliferation. In a parallel investigation, cell morphology and adhesion to the surface was studied by fluorescence microscopy and scanning electron microscopy. Strong bonds between the materials and cells were found in both cases, as osteoblast pseudopodes penetrated deep into the material. According to our observations, the 6P57 glass films were superior with respect to viability and proliferation performances.  相似文献   

17.
18.
Fast heating of target material by femtosecond laser pulse (fsLP) with duration τL∼40-100 fs results in the formation of thermomechanically stressed state. Its unloading may cause frontal cavitation of subsurface layer at a depth of 50 nm for Al and 100 nm for Au. The compression wave propagating deep into material hits the rear-side of the target with the formation of rarefaction wave. The last may produce cracks and rear-side spallation. Results of MD simulations of ablation and spallation of Al and Au metals under action fsLP are presented. It is shown that the used EAM potentials (Mishin et al. and our new one) predict the different ablation and spallation thresholds on absorbed fluence in Al: ablation Fa=60{65} mJ/cm2and spallation Fs=120{190} mJ/cm2, where numbers in brackets { } show the corresponding values for Mishin potential. The strain rate in spallation zone was 4.3×109 1/s at spallation threshold. Simulated spall strength of Al is 7.4{8.7} GPa, that is noticeably less than 10.3{14} GPa obtained from acoustic approximation with the use of velocity pullback on velocity profile of free rear surface. The ablation threshold Fa≈120 mJ/cm2 and crater depth of 110 nm are obtained in MD simulations of gold with the new EAM potential. They agree well with experiment.  相似文献   

19.
The growth morphologies of the {0 0 1} faces of [MnHg(SCN)4(H2O)2]·2C4H9NO (MMTWD) crystals grown at 17 °C at a supersaturation of σ = 0.5 have been investigated by ex situ atomic force microscopy (AFM).Various spiral growth hillocks are described and discussed. Surface morphology changes as a result of dissolving the surface materials by absorbed moisture in air are also detected. The microcrystals are suggested to be as a result of the reconstruction of amorphous aggregates on the surfaces.  相似文献   

20.
The bonding structure of carbon films prepared by pulsed laser deposition is determined by the plasma properties especially the change of the kinetic energy. Using double laser pulses the ablation process and the characteristics of the generated plasma can be controlled by the setting of the delay between the pulses. In our experiments, amorphous carbon films have been deposited in vacuum onto Si substrates by double pulses from a Ti:sapphire laser (180 fs, λ = 800 nm, at 1 kHz) and a KrF laser system (500 fs, λ = 248 nm, at 5 Hz). The intensities have been varied in the range of 3.4 × 1012 to 2 × 1013 W/cm2. The morphology and the main properties of the thin layers were investigated as a function of the time delay between the two ablating pulses (0-116.8 ps) and as a function of the irradiated area on the target surface. Atomic force microscopy, spectroscopic ellipsometry and Raman-spectroscopy were used to characterize the films. It was demonstrated that the change of the delay and the spot size results in the modification of the thickness distribution of the layers, and the carbon sp2/sp3 bonding ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号