首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A high-concentration in-situ phosphorus-doping technique for silicon low-temperature epitaxial growth with Si2H6 has been developed. Growth temperature has an impact on the crystal quality and on lattice strain of phosphorus-doped silicon layers. Resistivity, micro-Raman spectroscopy, and high-resolution X-ray diffraction indicated that good crystal quality was achieved at a growth temperature of 525 °C. On the other hand, growth pressure has little influence on crystal quality or on lattice strain except for surface morphology. By optimizing epitaxial growth conditions, an extremely high concentration of phosphorous doping was achieved without a high-temperature activation annealing, and the resultant good crystal quality of the phosphorus-doped silicon layer gave a very low resistivity. Accordingly, the high-concentration in-situ phosphorus doping is a powerful technique to fabricate future ultra-high-speed SiGe HBTs.  相似文献   

2.
We deposited amorphous thin films of boron carbide by pulsed laser deposition using a B4C target at room temperature. As the laser fluence increased from 1 to 3 J/cm2, the number of 0.25–5 μm particulates embedded in the films decreased, and the B/C atomic ratio of the films increased from 1.8 to 3.2. The arrival of melt droplets, atoms, and small molecular species depending on laser fluence appeared to be involved in the film formation. In addition, with increasing fluence the nanoindentation hardness of the films increased from 14 to 32 GPa. We believe that the dominant factor in the observed increase in the films’ hardness is the arrival of highly energetic ions and atoms that results in the formation of denser films. Received: 23 March 2001 / Accepted: 1 July 2001 / Published online: 2 October 2001  相似文献   

3.
Low-temperature silicon dioxide (SiO2) films were grown on silicon germanium (SiGe) surfaces using the liquid-phase deposition (LPD) method. The growth solutions of LPD-SiO2 are hydrofluorosilicic acid (H2SiF6) and boric acid (H3BO3). It was found that the growth rate increases with increasing temperature and concentration of H3BO3. The Auger electron spectroscopy profile shows that no pileup of Ge atoms occurs at the interface of SiO2/SiGe after the LPD-SiO2 growth. Al/LPD-SiO2/p-SiGe MOS capacitors were prepared to determine capacitance-voltage (C-V) and current-voltage (I-V) characteristics. In our experiments, a low leakage current density of 8.69 × 10−9 A/cm2 under a 2 MV/cm electric field was observed. Such a value is much smaller than those of plasma- and thermal-oxides as a result of no plasma damage and a lower growth temperature. Moreover, lower oxide charges and interface charge densities of 3.82 × 1010 cm−2 and 1.12 × 1011 eV−1 cm−2, respectively, were achieved in our LPD-SiO2 compared to direct photochemical-vapor-deposition-SiO2.  相似文献   

4.
5.
Cu- and Ag-doped ZnO films were deposited by direct current co-reactive magnetron sputtering technique. The microstructure, the chemical states of the oxygen, zinc, copper and silver and the optical properties in doped ZnO films were investigated by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS) and UV-Visible spectroscopy. XRD analysis revealed that both of Cu- and Ag-doped ZnO films consist of single phase ZnO with zincite structure while the doping elements had an evident effect on the (0 0 2) preferential orientation. The XPS spectra showed that the chemical states of oxygen were different in Cu- and Ag-doped ZnO thin films, which may lead to the shift of the band gap as can be observed in the transmittance and absorption spectra. Meanwhile, the widths of band tails of ZnO films became larger after Cu and Ag doping.  相似文献   

6.
The aim of this work is to improve the mechanical properties of AISI 4140 steel substrates by using a TiN[BCN/BN]n/c-BN multilayer system as a protective coating. TiN[BCN/BN]n/c-BN multilayered coatings via reactive r.f. magnetron sputtering technique were grown, systematically varying the length period (Λ) and the number of bilayers (n) because one bilayer (n = 1) represents two different layers (tBCN + tBN), thus the total thickness of the coating and all other growth parameters were maintained constant. The coatings were characterized by Fourier transform infrared spectroscopy showing bands associated with h-BN bonds and c-BN stretching vibrations centered at 1400 cm−1 and 1100 cm−1, respectively. Coating composition and multilayer modulation were studied via secondary ion mass spectroscopy. Atomic force microscopy analysis revealed a reduction in grain size and roughness when the bilayer number (n) increased and the bilayer period decreased. Finally, enhancement of mechanical properties was determined via nanoindentation measurements. The best behavior was obtained when the bilayer period (Λ) was 80 nm (n = 25), yielding the relative highest hardness (∼30 GPa) and elastic modulus (230 GPa). The values for the hardness and elastic modulus are 1.5 and 1.7 times greater than the coating with n = 1, respectively. The enhancement effects in multilayered coatings could be attributed to different mechanisms for layer formation with nanometric thickness due to the Hall-Petch effect; because this effect, originally used to explain increased hardness with decreasing grain size in bulk polycrystalline metals, has also been used to explain hardness enhancements in multilayered coatings taking into account the thickness reduction at individual single layers that make up the multilayered system. The Hall-Petch model based on dislocation motion within layered and across layer interfaces has been successfully applied to multilayered coatings to explain this hardness enhancement.  相似文献   

7.
A potential organic nonlinear optical guanidinium 3-nitrobenzoate (Gu-3NB) was synthesized. Solubility of Gu-3NB was determined for various temperatures. Meta stable zone width and induction period values were determined in order to optimize the growth parameters. Nucleation parameters, such as interfacial tension, critical radius and free energy of formation of critical nucleus were evaluated. Optically good quality, bulk single crystal of Gu-3NB was successfully grown by slow evaporation method and slow cooling method with the optimized growth parameters. The etching study was performed to ascertain the growth quality of the crystal. The unit cell parameters and the morphology of Gu-3NB single crystal were determined by X-ray diffraction. The grown crystal was subjected to various characterization studies, such as optical, dielectric measurement and mechanical studies.  相似文献   

8.
The effects of tellurium (Te) additives on electrical conductivity, dielectric constant and structural properties of sintered silicon nitride ceramics have been studied. Different amounts of Te (10% and 20%) were added as sintering additives to silicon nitride ceramic powders and sintering was performed. Microstructure and composition were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrical conductivity and dielectric constant (ε′) increase exponentially with temperature greater than 800 K. The electrical conductivity and dielectric constant increase but activation energy decreases from 0.72 to 0.33 eV with the increase of Te concentration. However, the conductivity increases five orders of magnitude at the concentration of 10% of Te in Si3N4. As the Te concentration increases the sintered silicon nitride ceramics become denser. These types of samples can be used as high temperature semiconducting materials.  相似文献   

9.
The crystal structure of SmFeAs(O0.93F0.07) has been investigated under high pressure (up to ∼9 GPa) by means of synchrotron powder diffraction analysis followed by Rietveld refinement. The bulk modulus was calculated (K0 = 103 GPa) using a 3rd order Birch–Murnaghan equation of state and resulted in quite good agreement with theoretical calculations reported for LaFeAsO. The linear compressibilities βa and βc are 2.11(4) and 4.56(7) × 10−3 GPa−1, respectively.  相似文献   

10.
Growth of MgO films on silicon substrate was conducted by KrF excimer pulsed-laser ablation system. Two kinds of growth mode were revealed in situ by reflection high energy electron diffraction. It was found that the layer growth mode of MgO thin films could remarkably reduce the misfit strain originated from the different lattice constant and thermal expansion coefficiency between MgO films and Si. An enhanced strain relaxation was discovered for MgO films, which were grown with the layer growth mode, in the film thickness range of 40-100 nm. The value of critical thickness for the formation of misfit dislocation agrees well with the calculated one. This exceptional phenomenon should be ascribed to the layer growth mode of epitaxial MgO films.  相似文献   

11.
Lead zirconate titanate (PZT) thin films are deposited on platinized silicon substrate by sol-gel process. The crystal structure and surface morphology of PZT thin films are characterized by X-ray diffraction and atomic force microscopy. Depth-sensing nanoindentation system is used to measure mechanical characteristics of PZT thin films. X-ray diffraction analyses confirm the single-phase perovskite structures of all PZT thin films. Nanoindentation measurements reveal that the indentation modulus and hardness of PZT thin films are related with the grain size and crystalline orientation. The increases of the indentation modulus and hardness with grain size are observed, indicating the reverse Hall-Petch effect. Furthermore, the indentation modulus of (1 1 1)-oriented PZT thin film is higher than those of (1 0 0)- and random-oriented films. The consistency between experimental data and numerical results of the effective indentation moduli for fiber-textured PZT thin films using Voigt-Reuss-Hill model is obtained.  相似文献   

12.
Osman SAHIN 《中国物理快报》2007,24(11):3206-3209
Depth sensing indentation (DSI) tests at the range of 200-1800mN are performed on porous sialon ceramic to determine the indentation load on Young's modulus and hardness values. The Young modulus and hardness (Dynamic and Martens) values are deduced by analysing the unloading segments of the DSI test load-displacement curves using the Oliver-Pharr method. It is found that Young's modulus ET, the dynamic hardness HD and the Martens hardness HM exhibit significant indentation load dependences. The values of Young's modulus and hardness decrease with the increasing indentation load, as a result of indentation load effect. The experimental hf /hm ratios lower than the critical value 0.7, with hm being the maximum penetration depth during loading and hf the final unloading depth, indicate that our sample shows the work hardening behaviour.  相似文献   

13.
Permalloy (Py) films were deposited on Si(111) or Corning 0211 glass substrates. There were two deposition temperatures: T s=room temperature (RT) and T s=270°C. The film thickness (t f) ranges from 10 to 130 nm. The crystal structure properties of the films were studied by X-ray diffraction and transmission electron microscopy. Mechanical properties (including Young’s modulus E f and hardness H f) of each film were measured by the nanoindentation (NI) technique. E f of the Py/Si(111) films was checked again by the laser induced surface acoustic wave (LA-SAW) technique. It was found that the NI technique is best suited for the measurements of E f and H f, but only when the sample belongs to the (soft film)/(soft substrate) system, such as the Py/glass film. For the (soft film)/(hard substrate) system, such as the Py/Si(111) film, the NI technique often provides higher values of E f and H f than expected. The anomalous phenomenon, associated with the NI technique may be related to the anisotropic crystal structures in the Py films on different kinds of substrates. From this study, we conclude that [E f of Py/Si(111)]>[E f of Py/glass] and [H f of Py/Si(111)]>[H f of Py/glass]. The good mechanical properties of the Py/Si(111) film make it a better candidate for recording head applications.  相似文献   

14.
Applied Physics A - The research work in this letter is on the microtribological properties of poly(ether ketone ketone) (PEKK) and sulfonated PEKK (S-PEKK) thin films. Polystyrene (PS) was used as...  相似文献   

15.
The authors have grown high‐quality m ‐plane In0.36Ga0.64N (1 00) films on ZnO (1 00) substrates at room temperature (RT) by pulsed laser deposition (PLD) and have investigated their structural properties. m ‐plane InGaN films grown on ZnO substrates at RT possess atomically flat surfaces with stepped and terraced structures, indicating that the film growth proceeds in a two‐dimensional mode. X‐ray diffraction measurements have revealed that the m ‐plane InGaN films grow without phase separation reactions at RT. The full‐width at half‐maximum values of the 1 00 X‐ray rocking curves of films with X‐ray incident azimuths perpendicular to the c ‐ and a‐axis are 88 arcsec and 78 arcsec, respectively. Reciprocal space‐mapping has revealed that a 50 nm thick m ‐plane In0.36Ga0.64N film grows coherently on the ZnO substrate, which can probably explain the low defect density that is observed in the film. (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
This work presents the structural characterization of nanoclusters formed from a-Si:H/Ge heterostructures processed by rapid thermal annealing (RTA) at 1000 °C for annealing times varying between 30 s and 70 s. The a-Si:H layers were grown on electron cyclotron resonance (ECR) using SiH4 and Ar precursor gases. The Ge layer was grown in an e-beam evaporation system. The structural characterizations were performed by high-resolution X-ray diffractometer (HRXRD) on grazing incidence X-ray reflection mode (GIXRR) and micro-Raman measurements. The average grain size, Ge concentration (xGe) and strain were estimated from Lorentzian GIXRR peak fit. The average grain size varied from 3 nm to 7.5 nm and decreased with annealing time. The xGe increase with annealing time and varied from 8% to 19%, approximately. The strain calculated for (1 1 1), (2 2 0) and (3 1 1) peaks at 40 s, 50 s, 60 s and 70 s annealing time suggest the geometrical changes in nanoclusters according to process time.  相似文献   

17.
Stable suspensions of pentacene functionalised ZrO2 nano‐particles were synthesised using a microwave plasma process. The particles were dispersed in‐situ in ethylene glycol. The formation of coated particles with small cores and a well defined size in the range of 3–5 nm was shown by X‐ray diffraction. In difference to resublimed pure pentacene, suspensions of the coated nano‐particles remained stable for weeks, as confirmed by the observation of a small aggregate size in dynamic light scattering. Thin films of the particles on Si based substrates were obtained by drop‐casting. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

18.
We report orientation-controllable growth of ZnO thin films and their orientation-dependent electrical characteristics. ZnO thin films were deposited on single-crystalline (1 0 0) LaAlO3 and (1 0 0) SrTiO3 substrates using pulsed laser deposition (PLD) at different substrate temperatures (400-800 °C). It was found that the orientation of ZnO films could be controlled by using different substrates of single-crystalline (1 0 0) LaAlO3 and (1 0 0) SrTiO3. The a-plane () and c-plane (0 0 0 2) oriented ZnO films are formed on LaAlO3 and SrTiO3, respectively. In both cases, the degree orientation increased with increasing deposition temperature Ts. Both the surface free energy and the degree of lattice mismatch are ascribed to play an important role for the orientation-controllable growth. Further characterization show that the grain size of the films with both orientations increases for a substrate temperature increase (i.e. from Ts = 400 °C to Ts = 800 °C), whereas the electrical properties of ZnO thin films depend upon their crystalline orientation, showing lower electrical resistivity values for a-plane oriented ZnO films.  相似文献   

19.
In this work, ZnO thin films with different thickness were prepared by sol-gel method on glass substrates and the structural and optical properties of these films were studied by X-ray diffractometer, atomic force microscope, UV-visible spectrophotometer, ellipsometer and fluorophotometer, respectively. The structural analyses show that all the samples have a wurtzite structure and are preferentially oriented along the c-axis perpendicular to the substrate surface. The growth process of highly c-axis oriented ZnO thin films derived from sol-gel method is a self-template process. With the increase of film thickness, the structural disorder decreases and the crystalline quality of the films is gradually improved. A transition of crystal growth mode from vertical growth to lateral growth is observed and the transition point is found between 270 and 360 nm thickness. The optical analyses show that with the increase of film thickness, both the refractive index and ultraviolet emission intensity are improved. However, the transmittance in the visible range is hardly influenced by the film thickness, and the averages are all above 80%.  相似文献   

20.
When S-termination on a Ge(1 0 0) surface was desorbed at an elevated temperature and an atomic layer deposition (ALD) HfO2 film was deposited, interfacial thickness was less than 1 nm. As a result, the equivalent oxide thickness (EOT) of the stack on the initially S-terminated surface was thinner than that deposited on the O3-oxidized surface, while HfO2 film thickness was almost identical on both surfaces. Nevertheless, the HfO2 stack on the initially S-terminated surface exhibited improved leakage current characteristics due to an increase in barrier height. Its thinner but robust interface will contribute to the scaling down of gate oxide integrity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号