首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
The surface free energy, or surface tension, of a liquid interface gives rise to a pressure jump when the interface is curved. Here we show that a similar capillary pressure arises at the interface of soft solids. We present experimental evidence that immersion of a thin elastomeric wire into a liquid induces a substantial elastic compression due to the solid capillary pressure at the bottom. We quantitatively determine the effective surface tension from the elastic displacement field and find a value comparable to the liquid-vapor surface tension. Most importantly, these results also reveal the way the liquid pulls on the solid close to the contact line: the capillary force is not oriented along the liquid-air interface, nor perpendicularly to the solid surface, as previously hypothesized, but towards the interior of the liquid.  相似文献   

3.
The main purpose of this paper is to numerically study the effect of droplet radius, temperature, and surface wettability on droplet surface tension. Moreover, the validity of Young-Laplace equation (Y-L) for nano-droplet is examined. Simulations of droplet surrounded by its vapor and droplet on solid surface are carried out and the results are compared to each other in order to comprehend the role of surface wettability on droplet surface tension. The pair potential for the liquid-liquid and liquid-solid interaction is considered using Lennard-Jones model. Different numbers of atoms and surface wettabilities are employed to generate droplet of different radiuses. In addition, contact angle of droplet on solid surface is computed. Pressure tensor and density profile is locally calculated. Furthermore, liquid pressure is evaluated far from the interface using the virial theorem and gas pressure is obtained using an equation of state. In order to calculate the surface tension, two different approaches are employed; Young-Laplace equation and direct molecular dynamics (MD) simulation. The surface tension increases with increase in droplet radius and it is seen that the surface wettability does not directly influence the surface tension.  相似文献   

4.
5.
On the boundary between nonthermal reactive plasma of molecular gases and solids gasspecific functional groups are formed by addition of plasmaspecies as pre-stages of destructive processes (chemical reactions and sputtering) or of formation of layers (polymeric). At various polymers it was observed that the vacuum ultra violet radiation occurs progressive changes in structure of layers near the surface (up to 100 μ). The formation of functional groups on the surface of solids is a quick process. It follows a period of slow penetration of plasma species in the first layers of the solid (some nm). The destruction of solids is not linear with time if the structure of solid is build up from some layers.  相似文献   

6.
Surface energetic characterization of porous solids usually requires the determination of the contact angle. This quantity is deduced by imbibition experiments carried out in such media with high surface tension liquids. Now then, this methodology needs the geometrical characterization of the porous medium by means of the deduction of its effective radius. Normally, this is made by imbibition experiments with n-alkanes, liquids whose surface tension is low enough as to suppose their contact angles with the solid surface are null. However, this last procedure is not free from some criticisms. Among them, the possible influence of the imbibition velocity on the contact angle, the effect of the precursor liquid film ahead the advancing liquid front on the driving force that gives rise to the movement, or the dependence of the effective radius on the length of the hydrocarbon chain of the n-alkanes. In an attempt of going deeply in these questions, imbibition experiments with n-alkanes have been carried out in porous columns of powdered calcium fluoride. These experiments have consisted of the measurement of the increase in the weight of the columns caused by the migration of the liquids through their interstices. The analysis of their results has been carried out by means of a new procedure based on the study of the velocity profile associated to the weight increase. This analysis has permitted us to conclude that, at least in the calcium fluoride columns, the contact angle of the n-alkane is not influenced by the capillary rise velocity, it taking in fact a null value during the process. On the other hand, it has been also proved that the driving force of the movement is caused by the replacement of the solid-vapour interface by the solid-liquid interface that happens during the imbibition, which means that only the Laplace's pressure, and not the precursor liquid film, contributes to the development of the phenomenon. Finally, it has been compared the values of the effective radius associated to each n-alkane, similar values being found independently from the particular liquid employed in the experiments, fact that indicates that the porous solid can be considered as a bunch of cylindrical and parallel capillaries of the same radius.  相似文献   

7.
The surface tension of a solid surface is not amenable to direct experimental measurement. The most common method for assessing this surface tension is by contact angle measurements. The currently optimal way to measure and interpret contact angles is discussed, emphasizing the yet unresolved issues. It is argued that the most meaningful measurements to be done are of the most stable apparent contact angle (from which the surface tension of the solid is eventually assessed) and the contact angle hysteresis range (which indicates the existence and degree of chemical heterogeneities and roughness).  相似文献   

8.
《Physics letters. A》2020,384(10):126218
Critical surface tension (CST) is a measure of solid surface tension and is mainly determined by measuring the contact angle of a droplet on a target solid surface. The concept of CST makes it possible to determine solid surface tension without any unprovable assumptions such as the Fowkes hypothesis. However, it requires somewhat special devices and skills for measuring the contact angle. In this work, we propose a simple method to determine the CST of a solid by measuring the droplet spreading area. This method is developed by combining the conventional CST with a simple analytical droplet model. The difference in estimated CSTs between our method and the conventional one is within 3.0%. Our method enables a quick and simple evaluation of the solid surface tension without special devices for measuring the contact angle.  相似文献   

9.
A conceptually new approach is proposed to estimate the thermal diffusivity of optically transparent solids at ambient temperature based on the ‘position-dependent instantaneous velocity’ of isothermal surfaces using a self-reference interferometer. A new analytical model is proposed using the exact solution to relate the instantaneous velocity of isothermal surfaces with the thermal diffusivity of solids. The experiment involves setting up a one-dimensional non-stationary heat flow inside the solid via step-temperature excitation to launch a spectrum of dissimilar ‘moving isothermal surfaces’ at the origin. Moving isothermal surfaces exhibit macroscale ‘rectilinear translatory motion’; the instantaneous velocity of any isothermal surface at any location in the heat-affected region is unique and governed by the thermal diffusivity of the solids. The intensity pattern produced by the self-reference interferometer encodes the moving isothermal surfaces into the corresponding moving intensity points. The instantaneous velocities of the intensity points are measured. For a given thermo-optic coefficient, the corresponding values of the isothermal surfaces are predicted to estimate the thermal diffusivity of the solids using BK7 glass as an example. Another improved method is proposed in which thermal diffusivity is estimated without measuring thermo-optic coefficient and quartz glass is utilized as a specimen. The results obtained using the proposed approaches closely match with the literature value.  相似文献   

10.
Gibbs formulated a complete and general thermodynamics for surfaces in multicomponent fluid systems. When considering solid–fluid surfaces, he restricted attention to single-component solids in contact with fluids that could contain multiple components. Attempts that have been offered to generalize Gibbs’ results for surfaces between multicomponent solids and fluid are problematic owing to the difficulty that the surface chemical potentials for components that also reside on substitutional lattice sites in the solids are not well defined. Therefore any expressions involving these surface chemical potentials, such as the conventional definition of the surface energy, will also not be well defined. In order to formulate a general thermodynamics of equilibrium that takes into account capillary effects in systems containing surfaces between a multicomponent solids and fluids, it is shown that the concept of thermodynamic availability (exergy) can be employed that, when applied to surfaces, depends on the extensive but not the intensive variables (such as the chemical potentials) of the surfaces. Using this approach, Gibbs–Thomson–Freundlich effects for finite-size solids, an adsorption equation for solid–fluid surfaces and the thermodynamics of nucleation during solidification can be treated in a straightforward manner without referring to the ill-defined surface chemical potentials. A derivation is given that appears to be the first one that properly generalizes Gibbs’ analysis for the reversible work to form a critical nucleus to the case of solidification.  相似文献   

11.
An equation is derived on semi-theoretical grounds which expresses the solid-vapour surface free energy as a function of the liquid surface tension and the solid-liquid interfacial free energy. A means of calculating reliable values for the solid-liquid energy is presented, which then allows an accurate estimate of solid surface energy at the melting temperature, Tm, to be made for the large number of elements for which dependable liquid surface tension data exist. A method of estimating surface entropy is presented, and has been used to calculate the energies typical of “average”, high-index surfaces at temperatures ranging from 0 K to Tm. It is felt that this paper describes the most accurate method presently available for the calculation of the surface energy of solids in the absence of direct experimental measurement.  相似文献   

12.
We report a molecular dynamics study of the contact between a rigid solid with a randomly rough surface and an elastic block with a flat surface. We study the contact area and the interfacial separation from small contact (low load) to full contact (high load). For small load the contact area varies linearly with the load and the interfacial separation depends logarithmically on the load. For high load the contact area approaches the nominal contact area (i.e., complete contact), and the interfacial separation approaches zero. The present results may be very important for soft solids, e.g., rubber, or for very smooth surfaces, where complete contact can be reached at moderate high loads without plastic deformation of the solids.  相似文献   

13.
The energy deposition of swift charged particles penetrating solids is accompanied by such processes as particle (electron, atom, ion, molecular ion, photon …) emission and/or a change of the solid along the particle track. The energy, velocity and mass distribution of such secondary particles obtained from thin solids (such as carbon, polyhydrocarbon, isolators and conductors) penetrated by projectiles (e.g. Ar 1.8 MeV) was measured quantitatively. A number of direct and indirect production mechanisms contribute to the internal source of electrons and secondary ions. The analysis of the ejected radicals give information on the emission processes, the temperature, the charge and the time scale of energy deposition near the surface of the solid which, eventually, become responsible for the track formation.  相似文献   

14.
Every AG  Vines RE  Wolfe JP 《Ultrasonics》2000,38(1-8):761-766
The observation of Scholte-like ultrasonic waves travelling along the water-loaded surfaces of solids with periodically varying properties is reported. Results are presented for two 2D superlattices that intersect the surface normally: a laminated solid of alternating 0.5 mm thick layers of aluminium and a polymer, and a hexagonal array of polymer rods of lattice spacing 1 mm in an aluminium matrix. The surface waves are generated and detected by line-focus acoustic lenses aligned parallel to each other, and separated by varying distances. For homogeneous solids, phase matching constraints do not allow the Scholte wave to be coupled into with an experimental configuration of this type, and this is demonstrated with results on a uni-directional carbon-fibre/epoxy composite. These constraints are relaxed for a periodic solid, where coupling takes place through Umklapp processes. In our experiments, the source pulse is fairly broadband, extending up to about 6 MHz, whereas the spectrum of the observed Scholte arrival is peaked at around 4 MHz. We attribute this to a resonance in the surface response of the solid associated with the superlattice structure. On rotating the solid about its surface normal, the Scholte wave displays a characteristic variation in phase arrival time and, to a lesser extent, also group arrival time. This variation is well accounted for with a model that incorporates Umklapp processes in the solid's surface response.  相似文献   

15.
《Surface Science Reports》2014,69(4):325-365
A sessile drop is an isolated drop which has been deposited on a solid substrate where the wetted area is limited by the three-phase contact line and characterized by contact angle, contact radius and drop height. Although, wetting has been studied using contact angles of drops on solids for more than 200 years, the question remains unanswered: Is wetting of a rough and chemically heterogeneous surface controlled by the interactions within the solid/liquid contact area beneath the droplet or only at the three-phase contact line? After the publications of Pease in 1945, Extrand in 1997, 2003 and Gao and McCarthy in 2007 and 2009, it was proposed that advancing, receding contact angles, and contact angle hysteresis of rough and chemically heterogeneous surfaces are determined by interactions of the liquid and the solid at the three-phase contact line alone and the interfacial area within the contact perimeter is irrelevant. As a consequence of this statement, the well-known Wenzel (1934) and Cassie (1945) equations which were derived using the contact area approach are proposed to be invalid and should be abandoned. A hot debate started in the field of surface science after 2007, between the three-phase contact line and interfacial contact area approach defenders. This paper presents a review of the published articles on contact angles and summarizes the views of the both sides. After presenting a brief history of the contact angles and their measurement methods, we discussed the basic contact angle theory and applications of contact angles on the characterization of flat, rough and micropatterned superhydrophobic surfaces. The weak and strong sides of both three-phase contact line and contact area approaches were discussed in detail and some practical conclusions were drawn.  相似文献   

16.
17.
The high-speed liquid/solid impact phenomenon is often seen in many technicalfields such as, water jet cutting technology[1], rain erosion of aviation vehicles[2] and ro-tor blades erosion in large steam turbines[3]. Recently, China Aerodynamics ResearchCenter reported experimental results of rain erosion of hypervelocity projectile[4]; Xi’anJiaotong University reported numerical simulation of high-speed liquid drop impact on asolid surface[5]. In analyzing the mechanism of material’s dama…  相似文献   

18.
蒋晗  陈明文  史国栋  王涛  王自东 《物理学报》2016,65(9):96803-096803
应用匹配渐近展开法和多变量展开法研究各向异性表面张力对定向凝固中深胞晶界面形态稳定性的影响, 通过寻找定向凝固系统的模式解获得了深胞晶界面形态满足的量子化条件. 结果表明, 与各向同性的定向凝固系统中深胞晶界面形态稳定性比较, 考虑各向异性表面张力的定向凝固中深胞晶生长界面形态也有两种整体不稳定性机制: 整体波动不稳定性和低频不稳定性. 随着各向异性表面张力的增加, 中性模式产生强振荡的枝晶结构的整体波动不稳定性的不稳定区域减小, 中性模式产生弱振荡的胞晶结构的低频不稳定性的不稳定区域增加.  相似文献   

19.
V.A. Marichev   《Surface science》2009,603(21):1131-60
Numerous derivations of the well-known Shuttleworth equation have been based on the unclear concept of “reversible cleavage” leading to the decisive step in any derivation - equalization of the surface free energy and surface stress. This is the key concept in contemporary surface thermodynamics of solids. But “cleavage” is not a surface process and, in this field, it cannot be a reversible operation. Besides, the “reversible cleavage” has no formal definition in the domain of the surface tension of solids that is an abnormal for any exact science. Consequently, this concept and all its corollaries including the Shuttleworth and generalized Lippmann equations have to be recognized as incorrect.  相似文献   

20.
Thermodynamic quantities on Au-In liquid alloys have been used as the input data for the interaction parameter calculations in the framework of the complex formation model (CFM). Once the interaction energies are computed the surface (surface tension and surface composition) and transport properties (chemical diffusion and viscosity) as well as the microscopic functions (concentration fluctuations in the long-wavelength limit and chemical short-range order parameter) have been calculated. The concentration and temperature dependent surface tension values have been compared with our new set of experimental data, obtained by the large drop method in the temperature range of T = 1273-1493 K. The anomalous change of surface tension for some alloy compositions may be attributed to a retention of order in the Au-In melts which is similar to the atomic arrangement in solid Au-In.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号