共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
采用离子束辅助沉积法制备了锂离子电池硅薄膜负极材料,研究了硅薄膜的晶体结构、表面形貌和电化学性能.研究结果表明:硅薄膜是非晶态的结构;非晶态硅薄膜发生嵌脱锂反应的电位分别为0.03 V与0.34 V和0.16 V与0.49 V;硅薄膜表现出很高比容量和充放电效率,其可逆比容量和库仑效率分别为3134.4 mAh/g和87.1%;硅薄膜具有优异的循环性能,在0.5C倍率下200次循环后容量保持率为92.2%.
关键词:
硅薄膜
离子束辅助沉积
锂离子电池
负极材料 相似文献
3.
The formation of in-plane texture via ion bombardment of uniaxially textured metal films was investigated. In particular, selective grain Ar ion beam etching of uniaxially textured (0 0 1) Ni was used to achieve in-plane aligned Ni grains. Unlike conventional ion beam assisted deposition, the ion beam irradiates the uniaxially textured film surface with no impinging deposition flux. The initial uniaxial texture is established via surface energy minimization with no ion irradiation. Within this sequential texturing method, in-plane grain alignment is driven by selective etching and grain overgrowth. Biaxial texture was achieved for ion beam irradiation at elevated temperature. 相似文献
4.
5.
Jian Leng Yuqiong Li Dongpu Zhang Xiaoyi Liao Wei Xue 《Applied Surface Science》2010,256(20):5832-5836
Y2O3 thin films were deposited by ion beam assisted deposition (IBAD) and the effects of fabrication parameters such as substrate temperature and ion energy on the structure, optical and electrical properties of the films were investigated. The results show that the deposited Y2O3 films had less optical absorption, larger refractive index, and better film crystallinity with the increase of substrate temperature or ion energy. The as-deposited Y2O3 films without ion-beam bombardment had larger relative dielectric constant (?r) and the ?r decreased with time even over by 40%, while the ?r of films prepared with high ion energy had less changes, only less than 3%. Also, with the increase of ion energy, the electrical breakdown strength and the figure of merit increased. 相似文献
6.
. Mekinis R. Gudaitis V. Kopustinskas S. Tamulevi
ius 《Applied Surface Science》2008,254(16):5252-5256
In present study diamond like carbon (DLC) films were deposited by closed drift ion source from the acetylene gas. The electrical and piezoresistive properties of ion beam synthesized DLC films were investigated. Diode-like current–voltage characteristics were observed both for DLC/nSi and DLC/pSi heterostructures. This fact was explained by high density of the irradiation-induced defects at the DLC/Si interface. Ohmic conductivity was observed for DLC/nSi heterostructure and metal/DLC/metal structure at low electric fields. At higher electric fields forward current transport was explained by Schottky emission and Poole–Frenkel emission for the DLC/nSi heterostructures and by Schottky emission and/or space charge limited currents for the DLC/pSi heterostructures. Strong dependence of the diamond like carbon film resistivity on temperature has been observed. Variable range hopping current transport mechanism at low electric field was revealed. Diamond like carbon piezoresistive elements with a gauge factor in 12–19 range were fabricated. 相似文献
7.
Highly flexible transparent and conductive ZnS/Ag/ZnS multilayer films prepared by ion beam assisted deposition 总被引:1,自引:0,他引:1
Zhinong Yu Jian Leng Wei XueTing Zhang Yurong JiangJie Zhang Dongpu Zhang 《Applied Surface Science》2012,258(7):2270-2274
ZnS/Ag/ZnS (ZAZ) multilayer films were prepared on polyethene terephthalate (PET) by ion beam assisted deposition at room temperature. The structural, optical and electrical characteristics of ZAZ multilayers dependent on the thickness of silver layer were investigated. The ZAZ multilayers exhibit a low sheet resistance of about 10 Ω/sq., a high transmittance of 92.1%, and the improved resistance stabilities when subjected to bending. When the inserted Ag thickness is over 12 nm, the ZAZ multilayers show good resistance stabilities due to the existence of a ductile Ag metal layer. The results suggest that ZAZ film has better optoelectrical and anti-deflection characteristics than conventional indium tin oxide (ITO) single layer. 相似文献
8.
Yu-Yun ChenJin-Cherng Hsu Paul W. WangYao-Wei Pai Chih-Yuan WuYung-Hsin Lin 《Applied Surface Science》2011,257(8):3446-3450
The correlation between the resistivity and the structure/composition in the aluminum doped zinc oxide (AZO) films fabricated by the ion beam co-sputtering deposition at room temperature was investigated. The various compositions of AZO films were controlled by the sputtered area ratio of Al to Zn target. The structure, Al concentrations and resistivities of the as-deposited films were determined by X-ray diffractometer (XRD), energy dispersive spectrometer (EDS) and four-point probe station, respectively. The lowest resistivity of the deposited film was 5.66 × 10−4 Ω-cm at the 0.7 wt.% aluminum concentration. The most intense ZnO (0 0 2) diffraction peak, the largest grain size, the longest mean free path, and the highest free carrier concentration in the film result in the lowest resistivity of 5.66 × 10−4 Ω-cm at room temperature; simultaneously, the thermal stability of the resistivity of the AZO film as a function of the sample temperature was investigated. Below 200 °C the film's resistivity was almost kept at a fixed value and the lowest resistivity of 4.64 × 10−4 Ω-cm at 247 °C was observed. 相似文献
9.
Cheng-Hung Shih Wen-Yuan Pang Chia-Ho Hiseh 《Journal of Physics and Chemistry of Solids》2010,71(12):1664-1668
We have studied the microstructure property of InN epitaxial films grown on ZnO substrate by plasma-assisted molecular beam epitaxy. We found that the In2O3 compound was produced on ZnO substrate and many pits were formed on the InN films when InN was directly grown on ZnO substrate with the N/In flux ratio less than 40. We demonstrated that the quality of InN film was significantly improved when the In2O3 layer was used as a buffer to prevent the reaction between In and the ZnO substrate. 相似文献
10.
L. Pichon T. Girardeau A. Straboni F. Lignou P. Gurin J. Perrire 《Applied Surface Science》1999,150(1-4):115-124
Zirconium nitrides reveal interesting optical and electrical properties which highly depend on the nitrogen stoichiometry. Indeed, the material exhibits a transition from the stable metallic ZrN (optical index for bulk at 633 nm: N=0.5−i3.2) to the metastable semi-transparent insulating Zr3N4 (N=3.2−i0.4). This work deals with the elaboration of homogeneous ZrN-like and Zr3N4-like coatings. These have been prepared using reactive Dual Ion Beam Sputtering (DIBS) using a Zr target and N2 or N2+Ar reactive gas. The influence of different elaboration parameters (ion energy, gas composition of the reactive beam and substrate temperature) on the nitrides composition and on their optical and electrical properties was particularly studied. A model was proposed to explain the influence of energy and temperature on the nitrogen composition. The nitrogen stoichiometry was shown to be controlled by a competitive mechanism between implantation of excess nitrogen amount in the subsurface and their elimination by exodiffusion. The first phenomenon is mainly controlled by the ion energy whereas the second one is enhanced by a high temperature and a high irradiation defects density. Therefore, the Zr3N4-like nitrides were obtained with low temperature and high energy (200 eV) conditions whereas high temperature and low energy led to ZrN-like materials. 相似文献
11.
Fan YeXing-Min Cai Fu-Ping DaiShou-Yong Jing Dong-Ping ZhangPing Fan Li-Jun Liu 《Physica B: Condensed Matter》2011,406(3):516-519
Cu-In-O composite thin films were deposited by reactive DC magnetron sputtering at room temperature. The samples were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), UV/vis spectrophotometer, four-probe measurement and Seebeck effect measurement, etc. The samples contain Cu, In and O. The ratios of Cu to In and O to In increase with increase in O2 flow rates. The ratio of Cu to In is over 1 and this suggests that Cu is in excess. The obtained Cu-In-O thin films are very possibly made of rhombohedral In2O3 and monoclinic CuO. Transmittance of the films decreases with increase in O2 flow rate. The decrease in transmittance results from increase in Cu content in the films. The optical band gap of all the samples is estimated to be 4.1-4.4 eV, which is larger than those of In2O3 and CuO. The sheet resistance of the films decreases with increase in O2 flow rate. Conductivity of the films is a little low, due to the addition of Cu and the poor crystalline quality of the film. The conduction behavior of the films is similar to that of In2O3 and the conduction mechanism of Cu-In-O thin films is through O vacancy. 相似文献
12.
H.Q. HuangF.J. Liu J. SunJ.W. Zhao Z.F. HuZ.J. Li X.Q. Zhang Y.S. Wang 《Applied Surface Science》2011,257(24):10721-10724
We report the fabrication and electrical characteristics of thin film transistors based on MgZnO thin films with different thicknesses of MgO buffer layer. The MgZnO thin films with MgO buffer layers were grown on SiO2/p-Si substrates by plasma assisted molecular beam epitaxy. The effects of the buffer layer thickness on the structural properties of MgZnO films are investigated by X-ray diffraction, and the results show that the crystal quality of the MgZnO film is enhanced with 4 nm MgO buffer layer. The MgZnO TFT with 4 nm MgO buffer layer exhibits an n-type enhancement mode characteristics with a field effect mobility of 1.85 cm2/V s, a threshold voltage of 27.6 V and an on/off ratio of above 106. 相似文献
13.
R. Thangavel Mohammad Tariq Yaseen Yia Chung Chang Chia-Hao Hsu Kuo-Wei Yeh Maw Kuen Wu 《Journal of Physics and Chemistry of Solids》2013
Transparent conducting polycrystalline Al-doped ZnO (AZO) films were deposited on sapphire substrates at substrate temperatures ranging from 200 to 300 °C by pulsed laser deposition (PLD). X-ray diffraction measurement shows that the crystalline quality of AZO films was improved with increased substrate temperature. The electrical and optical properties of the AZO films have been systematically studied via various experimental tools. The room-temperature micro-photoluminescence (µ-PL) spectra show a strong ultraviolet (UV) excitonic emission and weak deep-level emission, which indicate low structural defects in the films. A Raman shift of about 11 cm−1 is observed for the first-order longitudinal-optical (LO) phonon peak for AZO films when compared to the LO phonon peak of bulk ZnO. The Raman spectra obtained with UV resonant excitation at room temperature show multi-phonon LO modes up to third order. Optical response due to free electrons of the AZO films was characterized in the photon energy range from 0.6 to 6.5 eV by spectroscopic ellipsometry (SE). The free electron response was expressed by a simple Drude model combined with the Cauchy model are reported. 相似文献
14.
Pure hydrogenated amorphous carbon (α-C:H) and nitrogen doped hydrogenated amorphous carbon (α-C:H:N) thin films were prepared using end-Hall (EH) ion beam deposition with a beam energy ranging from 24 eV to 48 eV. The composition, microstructure and mechanical properties of the films were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, scanning probe microscopy (SPM), and nano-scratch tests. The films are uniform and smooth with root mean square roughness values of 0.5-0.8 nm for α-C:H and 0.35 nm for α-C:H:N films. When the ion energy was increased from 24 eV to 48 eV, the fraction of sp3 bonding in the α-C:H films increased from 36% to 55%, the hardness increased from 8 GPa to 12.5 GPa, and the Young's modulus increased from 100 GPa to 130 GPa. In the α-C:H:N films, N/C atomic ratio, the hardness and Young's modulus of the α-C:H:N films are, 0.087, 15 and 145 GPa, respectively. The results indicate that both higher ion energy and a small amount of N doping improve the mechanical properties of the films. The results have demonstrated that smooth and uniform α-C:H and α-C:H:N films with large area and reasonably high hardness and Young's modulus can be synthesized by EH ion source. 相似文献
15.
R. Albert Enzenroth K.L. Barth W.S. Sampath 《Journal of Physics and Chemistry of Solids》2005,66(11):1883-1886
A correlation between the CdCl2 treatment and the change in conversion efficiency with light and heat stress indoors (stability) has been shown previously by our group for CdS/CdTe:Cu PV devices. In the present work CdTe devices were fabricated with various CdCl2 treatments and with and without a Cu containing back contact. The electrical characteristics of the defects acting as traps in these devices were studied using thermal admittance spectroscopy (TAS). The activation energy Et−EV, the apparent capture cross section and the densities of state functions (using Walter's method) of the traps in the devices were estimated. 相似文献
16.
The effects of biaxial stress in ZnO:Ga thin films on different substrates, e.g., sapphire(0001), quartz, Si(001), and glass have been investigated by X-ray diffraction, atomic force microscopy, and electrical transport and ellipsometric measurements. A strong dependence of orientation, crystallite size, transport, and electronic properties upon the substrate-induced stress has been found. The structural properties indicate that a tensile stress exists in epitaxial ZnO:Ga films grown on sapphire, Si, and quartz, while a compressive stress appears in films grown on glass. The resistivity of the films decreased with increasing biaxial stress, which is inversely proportional to the product of the carrier concentration and Hall mobility. The refractive index n was found to decrease with increasing biaxial stress, while the optical band gap E0 increased with stress. These behaviors are attributed to lattice contraction and the increase in the carrier concentration that is induced by the stress. Our experimental data suggest that the mechanism of substrate-induced stress is important for understanding the properties of ZnO:Ga thin films and for the fabrication of devices which use these materials. 相似文献
17.
The excitation of terahertz surface plasma wave (SPW) over bismuth thin film-glass structure by a parallel propagating electron beam is studied. The SPW phase velocity is sensitive to the thickness of bismuth film and it is driven via the Cerenkov resonance. The growth rate for terahertz radiation generation by an electron beam is obtained under small signal approximation. 相似文献
18.
Li–N dual-doped ZnO films [ZnO:(Li,N)] with Li doping concentrations of 3 at.%–5 at.% were grown on a glass substrate using an ion beam enhanced deposition(IBED) method. An optimal p-type ZnO:(Li,N) film with the resistivity of 11.4 Ω·cm was obtained by doping 4 at.% of Li and 5 sccm flow ratio of N2. The ZnO:(Li,N) films exhibited a wurtzite structure and good transmittance in the visible region. The p-type conductive mechanism of ZnO:(Li,N) films are attributed to the Li substitute Zn site(LiZn) acceptor. N doping in ZnO can forms the Lii–NOcomplex, which depresses the compensation of Li occupy interstitial site(Lii) donors for LiZnacceptor and helps to achieve p-type ZnO:(Li,N) films. Room temperature photoluminescence measurements indicate that the UV peak(381 nm) is due to the shallow acceptors LiZnin the p-type ZnO:(Li,N) films. The band gap of the ZnO:(Li,N) films has a red-shift after p-type doping. 相似文献
19.
Thin films of niobium oxides are deposited by ion beam sputtering with a Kaufman-type ion source. The deposition rate is function of the oxygen partial pressure. There is an optimum oxygen pressure at 7 × 10–5 Torr to deposite a stoichiometric film. The as-deposited films are amorphous. The optical parameters, including refractive index, extinction coefficient, and homogeneity, of the oxide films are influenced by post-baking temperature. The surface morphology measured by an atomic force microscope (AFM) shows that there is a certain range of optimum baking temperature which yields a smooth film and a good optical quality. 相似文献
20.
Wun-Kai Wang Hua-Chiang Wen Chun-Hu Cheng Wu-Ching Chou Wei-Hung Yau Ching-Hua Hung Chang-Pin Chou 《Journal of Physics and Chemistry of Solids》2014
We used atomic layer deposition to form ZnO thin-film coatings on Si substrates and then evaluate the effect of pile-up using the nanoscratch technique under a ramped mode. The wear volume decreased with increasing annealing temperature from room temperature to 400 °C for a given load. Elastic-to-plastic deformation occurred during sliding scratch processing between the groove and film for loading penetration of 30 nm. The onset of non-elastic behavior and greater contact pressure were evident for loading penetration of 150 nm; thus, full plastic deformation occurred as a result of a substrate effect. We suspect that elastic–plastic failure events were related to edge bulging between the groove and film, with elastic–plastic deformation attributable to adhesion discontinuities and/or cohesion failure of the ZnO films. 相似文献