首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In cold spray process, impacting velocity and critical velocity of particles dominate the deposition process and coating properties for given materials. The impacting velocity and critical velocity of particles depend on the powder properties and cold spray conditions. In the present study, the in-flight particle velocity of copper powder in low pressure cold spraying was measured using an imaging technique. The effects of particle size and particle morphology on in-flight particle velocity and deposition efficiency were investigated. The critical velocity of copper powder was estimated by combining the in-flight particle velocity and deposition efficiency. The effect of annealing of feedstock powder on deposition and critical velocity was also investigated. The results showed that the irregular shape particle presents higher in-flight velocity than the spherical shape particle under the same condition. For irregular shape particles, the in-flight velocity decreased from 390 to 282 m/s as the particle size increases from 20 to 60 μm. Critical velocities of about 425 m/s and more than 550 m/s were estimated for the feedstock copper powder with spherical and irregular shape morphology, respectively. For the irregular shape particles, the critical velocity decreased from more than 550 to 460 m/s after preheating at 390 °C for 1 h. It was also found that the larger size powder presents a lower critical velocity in this study.  相似文献   

2.
Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol–gel method. The catalyst precursor was fired at 450 °C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50–75 μm) and sample B (smaller than 50 μm). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of α-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing α-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50–75 μm showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 μm. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.  相似文献   

3.
Si doped and undoped nanocrystalline aluminum nitride thin films were deposited on various substrates by direct current sputtering technique. X-ray diffraction analysis confirmed the formation of phase pure hexagonal aluminum nitride with a single peak corresponding to (1 0 0) reflection of AlN with lattice constants, a = 0.3114 nm and c = 0.4986 nm. Energy dispersive analysis of X-rays confirmed the presence of Si in the doped AlN films. Atomic force microscopic studies showed that the average particle size of the film prepared at substrate temperature 200 °C was 9.5 nm, but when 5 at.% Si was incorporated the average particle size increased to ∼21 nm. Field emission study indicated that, with increasing Si doping concentration, the emission characteristics have been improved. The turn-on field (Eto) was 15.0 (±0.7) V/μm, 8.0 (±0.4) V/μm and 7.8 (±0.5) V/μm for undoped, 3 at.% and 5 at.% Si doped AlN films respectively and the maximum current density of 0.27 μA/cm2 has been observed for 5 at.% Si doped nanocrystalline AlN film. It was also found that the dielectric properties were highly dependent on Si doping.  相似文献   

4.
Thick crystalline zirconium oxide films were synthesized on Zircaloy-4 substrates by anodic oxidation at room temperature in NaOH solution with a stable applied voltage (300 V). The film is approximately 4.7 μm in thickness. The XPS and SEM analysis shows that the film is a three-layer structure in water, hydroxide and oxide parts. The thickness of that order is ∼0.01 μm, ∼1 μm, ∼3.7 μm, respectively. The oxide layer is composed of tetragonal and monoclinic phases with the volume ratio about 0.2. Furthermore, the thick anodic film acts as a barrier to oxygen and zirconium migrations. It effectively protects zirconium alloys against the worse corrosion. An extremely low passive current density of ∼0.018 μA/cm2 and a low oxidation weight gain of ∼0.411 mg/cm2 were also observed in the films.  相似文献   

5.
Iron (Fe) fine particles encapsulated by titanium oxide (TiO2) were synthesized through a solid-phase reaction. The structure of Fe cores and TiO2 shells consisted of α-Fe and rutile TiO2, respectively. The average particle size was 0.8 μm, in which a Fe particle with a diameter of ∼750 nm was encapsulated by a TiO2 shell with a thickness of ∼100 nm. The Fe particles had a high saturation magnetization of 127 Am2/kg and low coercivity of 1.6 kA/m. They also exhibited excellent corrosion resistance, similar to Fe3O4 in a soaking test.  相似文献   

6.
The process of heat release during carbon particle formation and growth after pyrolysis of carbon suboxide C3O2 behind shock waves was investigated. For this goal, temperature and optical density of gas-particle mixtures initially consisting of 3% C3O2 + 5% CO2 in Ar were measured as a function of time. The temperature was determined by two-channel emission-absorption spectroscopy at λ = 2.7 ± 0.4 μm, corresponding to the CO2 (1,0,1) vibrational band. In the range of initial temperatures behind the shock waves from 1600 up to 2200 K a significant heating of the mixture during particle formation and growth was observed that increased towards higher temperatures. The analysis of the obtained data in combination with previous results about the temperature dependence of the particle size shows a decrease of the heat release of condensation from ∼200 kJ/mol per atom for particles containing ∼1000 atoms to ∼50 kJ/mol per atom for particle containing ∼106 atoms.  相似文献   

7.
The local structure in melt-spun Fe85Ga15 ribbons with a width ∼3 mm and thickness ∼60 μm produced in argon atmosphere was studied by analyzing EXAFS and XANES data. The following results were obtained: Ga–Ga bonds were not detected excluding the tendency to form clusters of Ga atoms; Ga substitutes Fe creating a local strain of about +1% on the first shell Fe–Ga bond, whereas on the second Fe–Ga shell strain quickly relaxes down to +0.3%; XANES spectra are compatible with a random substitution of Fe atoms by Ga atoms in the A2 structure. From the AFM investigation, we observed that at the surface (free side) of the ribbon the particles are elongated along the ribbon (∼2 μm×∼5 μm) and each particle is formed by small grains of average size of 200 nm.  相似文献   

8.
The thermal poling method was utilized to create second-order optical nonlinearity in Pyrex borosilicate glass. The distribution and amplitude of the induced nonlinearity were characterized with second harmonic microscopy. The induced optical nonlinearity was found in a thin layer around 1.9 μm under the anode surface with a magnitude as high as 0.24 pm/V, comparable to that observed in fused silica samples. SEM observation of the cross-section of the poled glass region, after it had been etched in diluted hydrofluoric acid for several minutes, revealed an etched trench, ∼1.8 μm under the anode edge and ∼0.3 μm in width; while in post-annealed samples, no such etched trench could be observed. The effect of poling voltage on the magnitude of the induced nonlinearity was also studied, where the results showed that higher poling voltage resulted in higher nonlinearity with a threshold of ∼0.9 kV.  相似文献   

9.
The Cu/ZnO nanocomposite films have been synthesized by cathodic electrodeposition and characterized using X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), photoluminescence (PL) and field emission microscope (FEM). The XRD pattern shows a set of well defined diffraction peaks, which could be indexed to the wurtzite hexagonal phase of ZnO. In addition, characteristic diffraction peaks corresponding to Cu and Zn are also observed. The SEM image shows formation of two-dimensional (2D) hexagonal sheets randomly distributed and aligned almost normal to the substrate. Uniformly distributed small clusters of Cu nanoparticles possessing average diameter of ∼25 nm, as revealed from the TEM image, are seen to be present on these 2D ZnO sheets. The selected area electron diffraction (SAED) image confirms the nanocrystalline nature of the Cu particles. From the field emission studies, carried out at the base pressure of ∼1 × 10−8 mbar, the turn-on field required for an emission current density of 0.1 μA/cm2 is found to be 1.56 V/μm and emission current density of ∼100 μA/cm2 has been drawn at an applied field of 3.12 V/μm. The Cu/ZnO nanocomposite film exhibits good emission current stability at the pre-set value of ∼10 μA over a duration of 5 h. The simplicity of the synthesis route coupled with the better emission properties propose the electrochemically synthesized Cu/ZnO nanocomposite film emitter as a promising electron source for high current density applications.  相似文献   

10.
Fluoropolymer (PTFE and FEP) substrates have been patterned through micro-contact printing of an aminosilane. The silane pattern was activated with a palladium catalyst that allowed the electroless deposition of copper which was used to form micropatterned copper electrodes. Conducting polymer micropatterns were then fabricated by electrodeposition of polypyrrole (PPy) onto the copper. The resulting patterns of 80 μm and 10 μm grids and 2 μm and 5 μm checkerboards were characterized using imaging XPS, TOF-SIMS, AFM and SEM. The size and resolution of the smallest copper patterns were limited by the copper grain size created during electroless deposition. The polypyrrole patterns were also limited by the roughness of the electrolytically deposited polymer film.  相似文献   

11.
Crystalline coiled carbon nano/micro fibers in thin film form have been synthesized via direct current plasma enhanced chemical vapor deposition (PECVD) on copper substrates with acetylene as a carbon precursor at 10 mbar pressure and 750 °C substrate temperature. The as-prepared samples were characterized by X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). XRD pattern as well as selected area electron diffraction (SAED) pattern showed that the samples were crystalline in nature. SEM and HRTEM studies showed that as synthesized coiled carbon fibers are having average diameter ∼100 nm and are several micrometers in length. The as-prepared samples showed moderately good electron field emission properties with a turn-on field as low as 1.96 V/μm for an inter-electrode distance 220 μm. The variation of field emission properties with inter-electrode distance has been studied in detail. The field emission properties of the coiled carbon fibrous thin films are compared with that of crystalline multiwalled carbon nanotubes and other carbon nanostructures.  相似文献   

12.
Xing Fan 《Applied Surface Science》2009,255(12):6297-6302
Particles generated by 2.94 μm pulsed IR laser ablation of liquid 3-nitrobenzyl alcohol were irradiated with a 351 nm UV laser 3.5 mm above and parallel to the sample target. The size and concentration of the ablated particles were measured with a light scattering particle sizer. The application of the UV laser resulted in a reduction in the average particle size by one-half and an increase in the total particle concentration by a factor of nine. The optimum delay between the IR and UV lasers was between 16 and 26 μs and was dependent on the fluence of the IR laser: higher fluence led to a more rapid appearance of particulate. The ejection velocity of the particle plume, as determined by the delay time corresponding to the maximum two-laser particle concentration signal, was 130 m/s at 1600 J/m2 IR laser fluence and increased to 220 m/s at 2700 J/m2. The emission of particles extended for several ms. The observations are consistent with a rapid phase change and emission of particulate, followed by an extended emission of particles ablated from the target surface.  相似文献   

13.
Synthesis process of nanowired Al/CuO thermite   总被引:1,自引:0,他引:1  
Al/CuO nanothermites were fabricated by thermal oxidation of copper layer at 450 °C for 5 h and by aluminum thermal evaporation: thermal evaporation allows producing thin layer less than 2 μm in size. The copper has been deposited by electroplating or thermal evaporation depending on the required thickness. The obtained diameter of Al/CuO nanowires is 150-250 nm. Al/CuO nanowires composite were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analysis (DTA). Two distinct exothermic reactions occurred at 515 and 667 °C and total energy release of this thermite is 10 kJ/cm3.  相似文献   

14.
Different densities of ZnO nanoneedle films have been prepared by pre-coated zinc foils with thin layer of copper and carbon followed by thermal oxidation at 400 °C in air. The X-ray diffraction patterns show well defined peaks, which could be indexed to the wurtzite hexagonal phase of ZnO. The scanning electron microscope images clearly reveal formation of ZnO needles on the entire substrate surface. The X-ray photoelectron spectroscopy studies indicate that Cu and C ions are incorporated into the ZnO lattice. Photoluminescence studies evaluate different emission bands originated from different defect mechanism. From the field emission studies, the threshold field, required to draw emission current density of ∼100 μA/cm2, is observed to be 2.25 V/μm and 1.57 V/μm for annealed zinc foil pre-coated with copper and carbon, respectively. The annealed film with copper layer exhibits good emission current stability at the pre-set value of ∼100 μA over a duration of 4 h. The results show that buffer layer is an important factor to control the growth rate, resulting in different density of ZnO needles, which leads to field emission properties. This method may have potential in fabrication of electron sources for high current density applications.  相似文献   

15.
This paper investigates the effect of particle size and compaction pressure on the magnetic properties of iron-phenolic soft magnetic composites (50 Hz-1000 kHz). The results showed that the optimum amount of phenolic resin to attain maximum permeability and minimum loss factor at 10 kHz is 0.7 wt% for samples containing iron powder with average particle size ∼150 μm compacted at 800 MPa. In accordance with this resin content, at high frequencies (>300 kHz), the sample with lower particle size ∼10 μm exhibits higher magnetic permeability, higher operating frequencies and lower imaginary part of permeability. With increase in the compaction pressure, specific resistivity decreases and imaginary and real parts of permeability increase at low frequencies.  相似文献   

16.
This paper investigated the behavior of carbon fibers subjected to a ∼20 kA, ∼5 μs high current pulse. It was found that the broken fibers and submicron particles were generated by electrical explosion process. After high current pulsed discharge, the fiber diameter increased significantly, from 5-7 μm to ∼13 μm. Also, the surface rupture of carbon fibers with valleys of hundreds of nanometers was observed. Most notably, the submicron particles appeared with two typical shapes (near-sphere and square). The high current pulsed discharge of carbon fibers can be divided into three stages, namely, heating stage, phase change stage, and explosion stage. Indeed, the electrical explosion process occurred in the last stage of ∼200 ns. The nature behind these results is closely related to the plasma development during the explosion process. The plasma expansion due to a large plasma thermal stress leads to the incomplete explosion. In the explosion stage, the current passing through the fibers exhibited a huge fluctuation, indicating plasma instabilities. Finally, the physical mechanisms, how to affect the surface morphology of carbon fibers, are presented.  相似文献   

17.
Electrospark welding (ESW) electrodes were manufactured from three binary aluminum-silicon alloys consisting of 12 and 17 wt% silicon, produced using chill and sand casting. The electrodes were used to assess the feasibility of producing aluminum-silicon weldments consisting of nano-sized silicon particles embedded in nanostructured aluminum matrix, using the ESW process. Line tests were performed to determine the optimal processing parameters resulting in a high quality deposit. X-ray diffraction (XRD) as well as optical and field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) was performed to determine the composition and microstructure of the depositions. It was determined that a capacitance of 110 μF and a voltage of 100 V resulted in the highest quality deposition. Furthermore it was determined that the ESW process was capable of producing a microstructure consisting of an extremely fine-grained silicon phase ranging from ∼6 to 50 nm for the eutectic composition, and 10-200 nm for the hypereutectic compositions. Finally it was determined that the functional thickness limit of the aluminum-silicon deposit produced under these process parameters was 120 μm.  相似文献   

18.
Bulk antimony doped germanium (n-Ge) has been exposed to a dc–hydrogen plasma. Capacitance–voltage depth profiles revealed extensive near surface passivation of the shallow donors as evidenced by ∼a 1.5 orders of magnitude reduction in the free carrier concentration up to depth of ∼3.2 μm. DLTS and Laplace-DLTS revealed a prominent electron trap 0.30 eV below the conduction (EC –0.30 eV). The concentration of this trap increased with plasma exposure time. The depth profile for this defect suggested a uniform distribution up to 1.2 μm. Annealing studies show that this trap, attributed to a hydrogen-related complex, is stable up to 200 °C. Hole traps, or vacancy-antimony centers, common in this material after high energy particle irradiation, were not observed after plasma exposure, an indication that this process does not create Frenkel (VI) pairs.  相似文献   

19.
R. Thapa 《Applied Surface Science》2010,256(12):3988-9653
Unique aluminum nitride amorphous nanotubes filled with Ni nanoparticles have been successfully synthesized through the reaction of NH3 over Ni-Al thin film at 1000 °C, which is similar to the extended vapor-liquid-solid technique. The X-ray diffraction and high-resolution transmission electron microscopic results are in good agreement with the amorphous nature of AlN nanotubes and crystallinity of Ni nanoparticles. The AlN nanotubes were having average diameter 35 nm and length ∼4 μm, whereas the Ni nanoparticles were having 5 nm in diameter. The unique structure showed excellent field emission property and high electrical conductivity ∼0.43 kmho/m at room temperature. The mechanism of good field emission property has been explained in detail.  相似文献   

20.
SiC reinforced copper composite coatings were prepared by electro-brush plating with micron-size silicon carbide (SiC) ranging from 1 to 5 μm on pure copper sheet in this paper. The micro-structural characterizations of SiC/Cu composite coatings were performed by optical microscope and Scanning Electron Microscope (SEM) coupled with spectrometer, to study co-deposition mechanism of SiC/Cu. It was found that there were three different patterns of SiC deposition in plating layers during electro-brush plating process, i.e. the particles could deposit inside copper grains, in grain boundaries, or in holes of the surface. To investigate deposition mechanism of each pattern, size of SiC and copper grains was compared. By comparison of size of copper grains and hard particles, SiC were either wrapped in copper grains or deposited in grain boundaries. Moreover, electro-brush plating layers at different brush velocities and current densities were obtained respectively, to analyze the microstructure evolution of the composite coatings. The hardness of plating layers was measured. The results indicated at the current density of 3 A/dm2, the SiC/Cu coating was compact with SiC content at a high level and the hardness reached a maximum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号