首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Influence of heat treatment regime on adhesion and wear resistance of Ni-P electroless coating on AZ91 magnesium alloy is investigated in this work. The pretreated substrate was plated using a bath containing nickel sulphate, sodium hypophosphite and sodium acetate as main constituents. The coated samples were heat treated at 400-450 °C for 1-8 h. Adhesion of coating was estimated from the scratch test with an initial load of 8.80 N. Wear resistance was studied using the pin-on-disc method. It was found that there is no significant dependence of the coating wear resistance on heat treatment regime, as the formation of Al-Ni intermetallic sub-layers that reduce coating adhesion is limited to regions where Al17Mg12 phase is present in the substrate. Moreover, the coating shows good sliding properties due to the formation of oxide glazes in the wear track.  相似文献   

2.
D. Dong 《Applied Surface Science》2009,255(15):7051-7055
Dispersible SiO2 nanoparticles were co-deposited with electroless Ni-P coating onto AISI-1045 steel substrates in the absence of any surfactants in plating bath. The resulting Ni-P/nano-SiO2 composite coatings were heat-treated for 1 h at 200 °C, 400 °C, and 600 °C, respectively. The hardness and wear resistance of the heat-treated composite coatings were measured. Moreover, the structural changes of the composite coatings before and after heat treatment were investigated by means of X-ray diffraction (XRD), while their elemental composition and morphology were analyzed using an energy dispersive spectrometer (EDS) and a scanning electron microscope (SEM). Results show that co-deposited SiO2 particles contributed to increase the hardness and wear resistance of electroless Ni-P coating, and the composite coating heat-treated at about 400 °C had the maximum hardness and wear resistance.  相似文献   

3.
Ni-Al2O3 composite coatings were prepared by using sediment co-deposition (SCD) technique and conventional electroplating (CEP) technique from Watt's type electrolyte without any additives. The microstructure, hardness, and wear resistance of resulting composites were investigated. The results show that the incorporation of nano-Al2O3 particles changes the surface morphology of nickel matrix. The preferential orientation is modified from (2 0 0) plane to (1 1 1) plane. The microhardness of Ni-Al2O3 composite coatings in the SCD technique are higher than that of the CEP technique and pure Ni coating and increase with the increasing of the nano-Al2O3 particles concentration in plating solution. The wear rate of the Ni-Al2O3 composite coating fabricated via SCD technique with 10 g/l nano-Al2O3 particles in plating bath is approximately one order of magnitude lower than that of pure Ni coating. Wear resistance for SCD obtained composite coatings is superior to that obtained by the CEP technique. The wear mechanism of pure Ni and nickel nano-Al2O3 composite coatings are adhesive wear and abrasive wear, respectively.  相似文献   

4.
TiO2-based coating containing amorphous calcium phosphate (CaP) was prepared on titanium alloy by microarc oxidation (MAO). The increase in the EDTA-2Na concentration was unfavorable for the crystallization of TiO2. After heat treatment, the amorphous CaP was crystallized. The thickness of the MAO coatings did not change when heat-treated at 400, 600 and 700 °C; while it increased slightly after heat treatment at 800 °C due to the crystallization of amorphous CaP and growth of TiO2. No apparent discontinuity between the coatings and substrates was observed at various heat-treatment temperatures, indicating the MAO coatings with good interfacial bonding to the substrate. The heat treatment did not alter the chemical composition of the MAO coating and the chemical states of Ti, Ca and P elements. However, it increased the roughness (Ra) of the MAO coating and improved the wetting ability of the MAO coating. In this work, preliminary investigation of the MG63 cell proliferation on the surface of the MAO and heat-treated MAO coatings was conducted. The MAO coating surface with about Ra = 220 nm may be suitable for the MG63 cell adhesion and proliferation. The increased roughness of the heat-treated MAO coatings may result in a decrease in the ability for cell adhesion and proliferation.  相似文献   

5.
In this paper, we report that the phase transformation of Ni-B, Ni-P diffusion barriers deposited electrolessly on Cu, for the reason that the Ni-P layer is a more effective diffusion barrier than the Ni-B layer. The Ni3B crystallized was decomposed to Ni and B2O3 above 400 °C and the Ni3P crystallized was decomposed to Ni and P2O5 above 600 °C respectively in Ar atmosphere. Also, the Ni3B was decomposed to Ni and free B above 400 °C and the Ni3P was decomposed to Ni and free P above 600 °C respectively in H2 atmosphere. The decomposed Ni formed a solid solution with Cu. The Cu diffusion occurred above 400 °C for Ni-B layer and above 600 °C for Ni-P layer, respectively. Because the decomposition temperature of Ni-P layer is about 200 °C higher than that of Ni-B layer, the Ni-P layer is a more effective barrier for Cu than the Ni-B layer.  相似文献   

6.
The high temperature self-lubricating wear-resistant NiCr/Cr3C2-30%WS2 coating and wear-resistant NiCr/Cr3C2 coating were fabricated on 0Cr18Ni9 austenitic stainless steel by laser cladding. Phase constitutions and microstructures were investigated, and the tribological properties were evaluated using a ball-on-disc wear tester under dry sliding condition at room-temperature (17 °C), 300 °C and 600 °C, respectively. Results indicated that the laser clad NiCr/Cr3C2 coating consisted of Cr7C3 primary phase and γ-(Fe,Ni)/Cr7C3 eutectic colony, while the coating added with WS2 was mainly composed of Cr7C3 and (Cr,W)C carbides, with the lubricating WS2 and CrS sulfides as the minor phases. The wear tests showed that the friction coefficients of two coatings both decrease with the increasing temperature, while the both wear rates increase. The friction coefficient of laser clad NiCr/Cr3C2-30%WS2 is lower than the coating without WS2 whatever at room-temperature, 300 °C, 600 °C, but its wear rate is only lower at 300 °C. It is considered that the laser clad NiCr/Cr3C2-30%WS2 composite coating has good combination of anti-wear and friction-reducing capabilities at room-temperature up to 300 °C.  相似文献   

7.
Uniform, adherent, single phase samarium doped ceria films have been successfully deposited by spray pyrolysis technique for their application in solid oxide fuel cell. These films have been deposited at different substrate temperatures on glass substrate and subsequently heat treated in tube furnace. Effect of substrate temperature and annealing temperature on phase formation was studied with thermo-gravimetric analysis and differential temperature analysis, X-ray diffraction, scanning electron microscope, and energy dispersive X-ray analysis techniques. These studies showed the formation of single phase Ce0.8Sm0.2O1.9 films, at substrate temperature 400 °C and annealing temperature 550 °C. Electrical resistivity of the films, at room temperature was of the order of 107 Ω cm while at 400 °C it is found to be of the order of 101 Ω cm. This reveals the use of these films for making low temperature solid oxide fuel cells.  相似文献   

8.
The work is concerned with the high-temperature heat treatment of an Al-12 wt.% Si alloy coated by an electroless Ni-P layer. The electroless deposition took place on a pre-treated substrate in a bath containing nickel hypophosphite, nickel lactate and lactic acid. Resulting Ni-P deposit showed a thickness of about 8 μm. The coated samples were heat-treated at 200-550 °C/1-24 h. LM, SEM, EDS and XRD were used to investigate phase transformations. Adherence to the substrate was estimated from the scratch test and microhardness of the heat-treated layers was also measured. It is found that various phase transformations occur, as both temperature and annealing time increase. These include (1) amorphous Ni-P → Ni + Ni3P, (2) Al + Ni → Al3Ni, (3) Ni3P → Ni12P5 + Ni, (4) Ni12P5 → Ni2P + Ni, and (5) Al3Ni + Ni → Al3Ni2. The formation of intermetallic phases, particularly Al3Ni2, leads to significant surface hardening, however, too thick layers of intermetallics reduce the adherence to the substrate. Based on the growth kinetics of the intermetallic phases, diffusion coefficients of Ni in Al3Ni and Al3Ni2 at 450-550 °C are estimated as follows: D(Al3Ni, 450 °C) ≈ 6 × 10−12 cm2 s−1, D(Al3Ni, 550 °C) ≈ 4 × 10−11 cm2 s−1, D(Al3Ni2, 450 °C) ≈ 1 × 10−12 cm2 s−1 and D(Al3Ni2, 550 °C) ≈ 1 × 10−11 cm2 s−1. Mechanisms of phase transformations are discussed in relation to the elemental diffusion.  相似文献   

9.
Oxidation protective SiC-Al2O3-mullite multi-coatings for carbon/carbon (C/C) composites were prepared with a two-step pack cementation process. The influence of preparation temperature and SiO2/Al2O3 ratio of the pack powder on the phase, microstructure and oxidation resistance of the multi-coatings were investigated. It showed that the multi-coatings that contained mullite could be produced at 1700-1800 °C. A denser coating surface was acquired with the decrease of SiO2/Al2O3 ratio in the pack chemistries while a little damnification to the interface of the coating and C/C substrate. The as-prepared coating could effectively protect C/C composites from oxidation at 1600 °C for 81 h.  相似文献   

10.
MnFe2O4 nanoparticles have been synthesized with a sol-gel method. Both differential thermal and thermo-gravimetric analyses indicate that MnFe2O4 nanoparticles form at 400 °C. Samples treated at 450 and 500 °C exhibit superparamagnetism at room temperature as implied from vibrating sample magnetometry. Mössbauer results indicate that as Mn2+ ions enter into the octahedral sites, Fe3+ ions transfer from octahedral to tetrahedral sites. When the calcination temperature increases from 450 to 700 °C, the occupation ratio of Fe3+ ions at the octahedral sites decreases from 43% to 39%. Susceptibility measurements versus magnetic field are reported for various temperatures (from 450 to 700 °C) and interpreted within the Stoner-Wohlfarth model.  相似文献   

11.
The diffusion of Mg in pulsed laser deposited K(Ta0.65Nb0.35)O3 thin films epitaxially grown on (1 0 0) MgO single crystal substrate were investigated by Auger electron spectroscopy (AES). A diffusion of Mg from the substrate into the whole thickness (400 nm) of the as-deposited K(Ta0.65Nb0.35)O3 films was observed with an accumulation of Mg at the surface. Ex situ post-annealing (750 °C/2 h) has led to a homogeneous distribution of Mg in all the ferroelectric coating. This strong reaction between film and substrate promotes a doping effect, responsible for the reduction of K(Ta0.65Nb0.35)O3 dielectric losses in comparison with films grown on other substrates.  相似文献   

12.
TiO2 thick films deposited on macroporous reticulated Al2O3 foams with pore size of 10 ppi and 15 ppi were prepared using dip coating from slurries of Aeroxide® P25 nanopowder and precipitated titania. All prepared films have sufficiently good adhesion to the surface of the substrate also in case of strongly cracked films. No measurable release of deposited TiO2 after repeated photocatalytic cycles was observed. The photocatalytic activity was characterized as the rate of mineralization of aqueous phenol solution under irradiation of UVA light by TOC technique. The best activity was obtained with Aeroxide® P25 coated Al2O3 foam with the pore size of 10 ppi, annealed at 600 °C. The optimal annealing temperature for preparation of films from precipitated titania could be determined at 700 °C. Films prepared by sol-gel deposition technique were considerably thinner compared to coatings made of suspensions and their photocatalytic activity was significantly smaller.  相似文献   

13.
TaC was deposited on graphite substrate with different TaCl5 partial pressure at 800 °C and 1200 °C by chemical vapor deposition. Microstructures and texture structures of the prepared coatings were researched with X-ray diffraction and scanning electronic microscopy. When the coating deposition process is controlled by surface reaction kinetics (800 °C), TaCl5 partial pressure had little influence on the microstructure and texture structure of the coating. When the coating formation process is controlled by diffusion kinetics (1200 °C), the microstructure, texture structure of the prepared TaC grains vary greatly with TaCl5 partial pressure. In the diffusion controlled process, the increasing of TaCl5 partial pressure will result in the changing of gas supersaturation, and then the occurrence of secondary nucleation, which is the main reason for the changing of coating morphology and texture structure. With the help of competitive growth in (1 0 0) and (1 1 1) directions, the formation mechanism of the different texture coatings are discussed in detail. In addition, a diffusion model of deposition species around step-edge-corner was also proposed to explain the growth mechanism of the texture coatings.  相似文献   

14.
p-Type nickel oxide thin films were prepared by sol-gel method, and their structural, optical and electrical properties were investigated. The Ni(OH)2 sol was formed from nickel (II) acetate tetrahydrate, Ni(CH3COO)2·4H2O, in a mixture of alcohol solution and poly(ethylene glycol), and deposited on an ITO substrate by spin coating followed by different heat treatments in air (50-800 °C). The formation and composition of NiO thin film was justified by EDX analysis. It is found that the thickness of the NiO film calcined at 450 °C for 1 h is about 120 nm with average particle size of 22 nm, and high UV transparency (∼75%) in the visible region is also observed. However, the transmittance is negligible for thin films calcined at 800 °C and below 200 °C due to larger particle size and the amorphous characteristics, respectively. Moreover, the composite electrode comprising n-type TiO2 and p-type NiO is fabricated. The current-voltage (I-V) characteristics of the composite TiO2/NiO electrode demonstrate significant p-type behavior by the shape of the rectifying curve in dark. The effect of calcination temperature on the rectification behavior is also discussed.  相似文献   

15.
Electrophoretic deposition (EPD) was showed to be a feasible and convenient method to fabricate NiCoCrAlY coatings on nickel based supperalloys. The microstructure and composition of the NiCoCrAlY coatings after vacuum heat treatment were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX). Isothermal-oxidation test was performed at 1100 °C in static air for 100 h. The results show that the major phases in electrophoretic deposited and vacuum heat treated NiCoCrAlY coating are γ-Ni and γ′-Ni3Al phases, also there is an extremely small quantity of Al2O3 in the coating. Composition fluctuations occur in the coating and a certain amount of titanium diffuse from the superalloy substrate to the top of the coating during vacuum heat treatment. The oxidation test results exhibit that the oxidation kinetics of this coating has two typical stages. The protective oxide layer is mainly formed in the initial linear growth stage and then the oxide layer hinders further oxidation of the coating in the subsequent parabolic growth stage. The coating can effectively protect the superalloy substrate from oxidation. A certain amount of rutile TiO2 is formed in the coating during oxidation and it is adverse to the oxidation resistance of the coating.  相似文献   

16.
A new cold spray coating technique for thick Al coating with finely dispersed Al-Ni intermetallic compounds was tested. For easy powder preparation and high yield, rather than using of Al/compound mixture feed stock, the spraying of pure Al and Ni powders mixture followed by post-annealing was suggested. The powder composition of Al and Ni was 75:25, and 90:10 (wt.%) to expect full consumption of pure Ni into intermetallic compounds. After Al-Ni composite coatings, the Ni particles were finely dispersed and embedded in the Al matrix with a good coating yield. Above 450 °C of post-annealing temperature, the Al3Ni and Al3Ni2 phases were observed in the cold-sprayed Al-Ni coatings. The Ni particles in the Al matrix were fully consumed via compounding reaction with Al at 550 °C of the annealing temperature.  相似文献   

17.
A Ni3Al coating was prepared by plasma spraying technique on the surface of titanium alloy. Ni-Al mixed powders, coatings and reaction products were investigated by scanning electron microscope, EDS, DSC and XRD. A tight bonding between the coating and the substrate was formed. The X-ray diffraction analysis of the patterns showed that the coating not only had Ni3Al phase, but also had NiO and Al2O3 phase microcontent. Comparing Ni coated Al to Ni3Al at 900 °C, the diffusion was stronger and the diffusion layer was thicker. A minute pore structure was formed at 1200 °C in the front edge of solid-state reaction layer. So Ni3Al restrained the solid-state reaction of the coating with the substrate, and as a whole weakened the entry of oxygen atoms into the substrate and quenched the out-diffusion of titanium.  相似文献   

18.
Ni-Co/nano-Al2O3 (Ni-Co/Al2O3) composite coatings were prepared under pulse reversal current (PRC) and direct current (dc) methods respectively. The microstructure of coatings was characterized by means of XRD, SEM and TEM. Both the Ni-Co alloy and composite coatings exhibit single phase of Ni matrix with face-centered cubic (fcc) crystal structure, and the crystal orientation of the Ni-Co/Al2O3 composite coating was transformed from crystal face (2 0 0) to (1 1 1) compared with alloy coatings. The hardness, anti-wear property and macro-residual stress were also investigated. The results showed that the microstructure and performance of the coatings were greatly affected by Al2O3 content and the electrodeposition methods. With the increasing of Al2O3 content, the hardness and wear resistance of the composite coatings enhanced. The PRC composite coatings exhibited compact surface, high hardness, better wear resistance and lower macro-residual stress compared with that of the dc composite coatings.  相似文献   

19.
Nano-sized Y2O3 particles were codeposited with nickel by electrolytic plating from a nickel sulfate bath. The effects of the incorporated Y2O3 on the structure, morphology and mechanical properties (including microhardness, friction coefficient and wear resistant) of Ni-Y2O3 composite coatings were studied. It is observed that the addition of nano-sized Y2O3 particles shows apparent influence on the reduction potential and pH of the electrolyte. The incorporated Y2O3 increases from 1.56 wt.% to 4.4 wt.% by increasing the Y2O3 concentration in the plating bath from 20 to 80 g/l. XRD results reveal that the incorporated Y2O3 particles favour the crystal faces (2 0 0) and (2 2 0). SEM and AFM images demonstrate that the addition of Y2O3 particles causes a smooth and compact surface. The present study also shows that the codeposited Y2O3 particles in deposits decrease the friction coefficient and simultaneously reduce the wear weight loss. Ni-Y2O3 composite coatings reach their best microhardness and tribological properties at Y2O3 content 4.4 wt.% under the experiment conditions.  相似文献   

20.
TiCu2Al ternary intermetallic compound coating has been in situ synthesized successfully on pure Ti substrate by laser cladding. Tribological properties of the prepared TiCu2Al intermetallic compound coating were systematically evaluated. It was found that the friction coefficient and wear rate was closely related to the normal load and sliding speed, i.e., the friction coefficient of the prepared TiCu2Al intermetallic compound coating decreased with increasing normal load and sliding speed. The wear rate of the TiCu2Al intermetallic compound coating decreased rapidly with increasing sliding speed, while the wear rate first increased and then decreased at normal load from 5 to 15 N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号