首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
After the development of a novel XeCl excimer laser with a nearly diffraction-limited beam and 175 ns pulse length, research was done on different industrial applications of this laser. Hole drilling, one of these applications, was studied extensively. A better understanding of the drilling process is necessary to optimise the drilling efficiency and to control the quality of the holes. A shadowgraphic imaging technique was used for studying the removal of material from the hole and the absorption of the laser beam by this removed material. Images were made at successive times both during and after the laser pulse.In drilling of thin foils, it was shown that the material was ejected mainly after the laser pulse. A comparison of different materials showed that the drilling process should be optimised for each material independently. Furthermore, the plume was found to be not fully transparent for processing materials with a strong absorption line at or near the laser wavelength. The correlation between material and drilling speed suggests improved energy transfer and improved melt ejection for the materials with this absorption. PACS 42.62.Cf; 52.38.Dx; 52.38.Mf  相似文献   

2.
The pulsed infrared laser dissociation of NF3 is reported for the first time, and is used to investigate silicon etching. The role played by collision-enhanced multiple-photon absorption and dissociation is considered, with data on the nonlinear decrease of the absorption cross-section with increasing pulse energy and increasing pressure presented. Using an experimental arrangement in which the laser beam is focussed parallel to the surface, the dissociation process induces spontaneous etching of silicon. Fluorinecontaining radicals diffuse from the focal volume to the surface where a heterogeneous chemical reaction occurs. Etching was monitored by use of a quartz-crystal microbalance upon which a thin film of amorphous silicon was deposited. For a surface with no previous exposure to the photolysis products, dissociation causes the formation of a surface layer prior to the onset of etching. X-ray photoelectron spectroscopy demonstrates this to be a fluorosilyl layer possessing a significant concentration of SiF3 and SiF4. In contrast, a surface already thickly fluorinated does not form a thicker layer once laser pulsing commences again. In this case, etching starts immediately with the first pulse. The etch yield dependencies on several parameters were obtained using silicon samples possessing a thick fluorosilyl surface layer. These parameters are NF3 pressure, laser wavenumber, pulse energy, buffer gas pressure, and perpendicular distance from focal volume to surface. Modeling of the etch yield variation with perpendicular distance shows the time-integrated flux of radicals impinging on the surface to be inversely proportional to the distance. Attempts at etching SiO2 under identical conditions were unsuccessful despite the evidence that thin native oxide films are removed during silicon etching.  相似文献   

3.
Petkovsek R  Panjan I  Babnik A  Mozina J 《Ultrasonics》2006,44(Z1):e1191-e1194
This paper describes an analysis of pulsed lasers micro-drilling of different metals. Study focuses to an optodynamic phenomenon which appears as thermal effects induced by laser light pulses and leads to dynamic process manifested as ultrasonic shock waves propagating into the sample material. The shock waves are detected by a non-contact optical method by using arm compensated Michelson. Monitoring of the main parameters of the micro drilling such as material ablation rate and efficiency was realized by analysis of the optodynamic signals. The process is characterized by decreasing ablation rate that leads to the finite hole depth. The experimental part of study comprehends a comparison between various metals. In order to describe decreasing ablation rate a theoretical model based on the energy balance is proposed. It considers the energy/heat transfer from the laser beam to the material and predicts a decreasing drilling rate with an increasing number of successive laser pulses. According to the proposed model, the finite depth of the hole appears as a consequence of the increasing surface area through which the energy of the laser beam is conducted away to the material around the processed area. Decreasing ablation rate and the finite hole depth predicted by model were in good agreement with the experimental results.  相似文献   

4.
Laser produced plasma plays an important role in the laser drilling of sheet metals as it can partially block and absorb the incident laser beam. A previous study of the transient properties of charged particles in the plasma plume has shown that, at low electron densities with high electron temperatures, laser drilling improves. This suggests that measurement of the absorption of the plasma plume is essential.The present study covers measurement of the absorption of a HeNe beam passing transversely through the plasma plume. The measurement was carried out using two fast response photodiodes and was repeated for sub-atmospheric pressures of air.The results obtained show that drilling is best at a pressure of 200 torr (2.7 x 104 Pa) and rapid expansion of the flares is favourable at 2 mm above the surface. Coupling of absorption and heating is also best at this pressure.  相似文献   

5.
The rear contact solar cell concept has been implemented to increase the solar cell efficiency. Practically, it necessitates rapid fabrication of a large number of via holes to form low-loss current paths. It is not a trivial task to drill a number of microscopic holes through a typical Si wafer of ??200???m thickness at reasonable processing throughput and yield. In this research, a femtosecond laser is employed to drill via holes in both crystalline silicon (c-Si) and multicrystalline silicon (mc-Si) thin wafers of ??170???m thickness with various laser parameters such as number of laser shots and pulse energy. Since a significantly high pulse energy compared to ablation threshold is mainly applied, aiming to achieve a rapid drilling process, the femtosecond laser beam is subjected to complex non-linear characteristics. Therefore, the relative placement of the sample with respect to the laser focal position is also rigorously examined. While the non-linear effect at high pulse energy regime is complex, it also facilitates the drilling process in terms of achieving high-aspect ratio, for example, by extending the effective depth of focus by non-linear effect. Cross-sectional morphological analysis in conjunction with on-line emission and shadowgraph imaging are carried out in order to elucidate the drilling mechanism.  相似文献   

6.
The study investigated the laser microhole drilling performance of polycrystalline silicon using the trepanning drilling method combined with the helix swing path with varying parameters, including laser pulse energy, pulse repetition frequency, and galvanometric scan speed. A pulsed ultraviolet laser system was used in an atmospheric condition and under deionized water. Moreover, the trepanning method was used to obtain a larger via diameter. The surface morphology, taper angle, and melted residual high were evaluated using a three-dimensional confocal laser scanning microscope and field emission scanning electron microscope. This method can produce larger holes and can be applied to crystalline silicon, multicrystalline silicon, thin-film silicon, and other materials for photovoltaic applications.  相似文献   

7.
A commercial femtosecond pulse laser was used to study the interaction of ultrashort laser pulses with aluminum. Tests were conducted to measure the average drilling rate over a range of laser pulse energies in both air and vacuum at the wavelengths corresponding to the fundamental and second harmonic of the laser. For the fundamental wavelength, it was observed that the drilling rates in vacuum were significantly higher than that for drilling in atmospheric air. For the laser beam that was converted to second harmonic, the drilling rate in vacuum at the same energy was slightly lower than that for drilling in air. The observed results can be explained by the presence of an energetic nanosecond pedestal in the laser pulse produced by the femtosecond laser system. This nanosecond component provides a major contribution into drilling and it is strongly affected by the optical breakdown plasma that reduces the drilling rate in air. Conversion to second harmonic reduces the relative energy content of the nanosecond component resulting in a higher contrast femtosecond pulse that is not affected by the near surface plasma. The presence of air results in self-focusing of the second harmonic laser beam, causing an increased drilling rate as compared to the interaction in vacuum.  相似文献   

8.
Laser material processing, being a non-contact process, minimizes many of the complexities involved in the decontamination and decommissioning of nuclear facilities. A high power laser beam incident on a concrete surface can produce spalling, glazing or vaporization, depending upon the laser power density and scan speed. This paper presents effect of various laser processing parameters on the efficiency of material removal by surface spalling and glazing. The size of laser beam at constant fluence or energy density had significantly different effect on the spalling process. In thick concrete block cutting the flow or removal of molten material limits the cutting depth. By employing repeated laser glazing followed by mechanical scrubbing process cutting of 150 mm thick concrete block was carried out. Gravitation force was utilized for molten materials to flow out while drilling holes on vertical concrete walls. The dependence of the incident laser beam angle on drilling time was experimentally studied.  相似文献   

9.
With the aim of improving the efficiency of laser drilling, an upward drilling method is proposed. In the experiment, a long pulsed laser beam was arranged to propagate upwards, in the opposite direction to gravity, and was used to drill hole at the bottom of an aluminum slab. A semi-infinite axisymmetric model of this system was also established. The analytical solution for the hole shape was derived by assuming that material, once it melted, was removed from hole with the aid of gravity. The calculation results agreed well with the experimental results. For further verification of the effects of gravity, the removed molten material and the hole shape for the downward (along the gravity direction) and the upward drilling cases were compared experimentally. In addition, the relationships between gravity, the inertia force, the surface tension and the viscosity were discussed. The results show that more molten material is expelled with the assistance of the gravity, and the laser energy is used more efficiently to melt the aluminum slab in the upward drilling.  相似文献   

10.
Straight through-holes of high aspect ratio have been fabricated in glass by femtosecond laser pulses, utilizing unique characteristics of ultrafast lasers such as volumetric multi-photon absorption and nonlinear self-focusing. In this study, interestingly, the drilling process was initiated and progressed in a self-regulated manner, while the laser focus was fixed through the specimen at the neighborhood of the rear surface that was in contact with liquid during the entire drilling process. The deposition of laser energy along the nonlinearly extended focal range and the guided drilling along the pre-defined region are explained based on time-resolved optical transmission and emission measurements.  相似文献   

11.
In the last years, laser beam drilling became increasingly important for many technical applications as it allows the contactless production of high quality drill holes. So far, mainly short laser pulses are of industrial relevance, as they offer a good compromise between precision and efficiency and combine high ablation efficiency with low thermal damage of the workpiece. Laser beam drilling in this pulse length range is still a highly thermal process. There are two ablation mechanisms: evaporation and melt expulsion. In order to achieve high quality processing results, a basic process understanding is absolutely necessary. Yet, process observations in laser beam drilling suffer from both the short time scales and the restricted accessibility of the interaction zone. Numerical simulations offer the possibility to acquire additional knowledge of the process as they allow a direct look into the drill hole during the ablation process. In this contribution, a numerical finite volume multi-phase simulation model for laser beam drilling with short laser pulses shall be presented. The model is applied for a basic study of the ablation process with μs and ns laser pulses. The obtained results show good qualitative correspondence with experimental data.  相似文献   

12.
For the first time to the authors' knowledge, optical waveguides have been inscribed in bulk crystalline silicon by ultrafast laser radiation. Femtosecond laser pulses of 40-nm spectral bandwidth, 1-kHz repetition rate, and 1.7-microJ on-target energy were applied at a mid-infrared wavelength of 2.4 microm to induce nonlinear absorption in the focal volume of the beam. By scanning the laser beam with respect to the sample, buried optical waveguides have been created that were single mode at 1550 and 1320 nm and guided light only with its polarization perpendicular to the sample's surface. Propagation losses with an upper limit of 1.2 dB/cm or less were observed throughout the optical telecommunications band.  相似文献   

13.
The unique optical properties of nanoparticles are highly sensitive in respect to particle shapes, sizes, and localization on a sample. This demands for a fully controlled fabrication process. The use of femtosecond laser pulses to generate and transfer nanoparticles from a bulk target towards a collector substrate is a promising approach. This process allows a controlled fabrication of spherical nanoparticles with a very smooth surface. Several process parameters can be varied to achieve the desired nanoparticle characteristics. In this paper, the influence of two of these parameters, i.e. the applied pulse energy and the laser beam shape, on the generation of Si nanoparticles from a bulk Si target are studied in detail. By changing the laser intensity distribution on the target surface one can influence the dynamics of molten material inducing its flow to the edges or to the center of the focal spot. Due to this dynamics of molten material, a single femtosecond laser pulse with a Gaussian beam shape generates multiple spherical nanoparticles from a bulk Si target. The statistical properties of this process, with respect to number of generated nanoparticles and laser pulse energy are investigated. We demonstrate for the first time that a ring-shaped intensity distribution on the target surface results in the generation of a single silicon nanoparticle with a controllable size. Furthermore, the generated silicon nanoparticles presented in this paper show strong electric and magnetic dipole resonances in the visible and near-infrared spectral range. Theoretical simulations as well as optical scattering measurements of single silicon nanoparticles are discussed and compared.  相似文献   

14.
A new noncontact technique is proposed for determining the parameters of nanosized metal coatings (absorption coefficients, refractive indices, and thicknesses). It is based on processing the measured angular dependence of the energy reflection coefficient of a polarized laser beam reflected by a thin-film structure surface. Features of determining the parameters of films on silicon substrates have been considered.  相似文献   

15.
Laser materials processing is highly affected by the existence of surface plasma. The absorption of surface plasma during drilling alters the power intensity distribution of the incident laser beam across the irradiated spot. The present study is carried out to measure the electron number density and temperature using a Langmuir probe while a mathematical formulation is conducted for the absorption coefficients due to electron-ion, electron-neutral atom collisions, inverse Bremsstrahlung, and photoionization processes. Consequently, a computer program is developed to compute the relevant absorption coefficients as well as the overall absorption coefficient. The laser power intensity distribution before and after the plasma absorption is computed at a plane 2.6 mm above the workpiece surface. It is found that 13% of the reduction occurs in the incident laser output power intensity at this plane in the plasma.  相似文献   

16.
In many laser applications such as drilling, welding and cutting, the role of the plasma in the transfer of energy between the laser beam and the metal surface appears to be rather important. It depends on several parameters such as laser wavelength, irradiation time and deposited energy but especially on the buffer gas nature. In this work the plasma is initiated by a TEA-CO2 laser beam perpendicularly focussed onto a Ti target (100 MW/cm2), in a cell containing He, Ar or a He-Ar mixture as buffer gas. The plasma is studied by time and space resolved spectroscopic diagnostics. The results show that helium allows target erosion whereas a highly absorbing breakdown plasma develops in argon shielding the target from the subsequent laser heating. With only 20% Ar in He, a strong quenching of the He plasma by Ar occurs, and the Ar plasma effect is dominant.  相似文献   

17.
The study aims at modeling of plume shielding aspects of laser ablation processes with multiple laser pulses applied to multiple targets. The main obstacle with the efficient use of multiple laser pulse technologies is an attenuation of the laser irradiation by previously ablated plumes. Dynamics of plumes is described by the axisymmetric Euler equations describing a vapor-droplet ablated mixture rolling-up in the surrounding ideal gas. For multiple laser pulses, the role of absorption of laser beam by previously ablated plumes is evaluated varying a model parameter that defines the fraction of laser energy absorbed by the ablated mixture. Absorption of laser beam by plume may cause its secondary explosion that cleans the target surface and, subsequently, increases the mass ablated by the consequent pulse. Dynamics of plumes ablated from two targets with possible time delay between two laser hits is investigated as a representative case of multiple targets. Shielding of the surface between targets appears to be significant if the second pulse occurs before the first shock wave passes the second target.  相似文献   

18.
崔昊杨  李志锋  马法君  陈效双  陆卫 《物理学报》2010,59(10):7055-7059
利用皮秒Nd:YAG脉冲激光器作为激发光源,测量出光子能量介于1.36 μm (0.912 eV)—1.80 μm (0.689 eV)之间的硅间接跃迁双光子吸收系数谱.尽管此波段范围内的激光光子能量小于硅间接带隙,但当激光辐照在硅基光电二极管受光面时,在二极管两电极端仍然探测到了显著的脉冲光伏信号.光伏信号峰值强度与入射光强呈二次幂函数关系,表明其是双光子吸收过程.采用pn结等效结电容充放电模型,将光伏响应信号峰值与入射光强相关联,从中提取出硅的间接跃迁双光子吸收系数,改变入射波长得到系数谱.研究表明:  相似文献   

19.
为确定飞秒激光光束对微尺度结构的烧蚀深度,研究了给定功率条件下对应的激光束有效烧蚀焦距。提出采用激光焦点处获得的烧痕阵列图像及在离焦状态下提取烧痕图像特征,通过分析图像特征与离焦距离,获得激光束有效烧蚀焦距范围的方法。在激光束焦点附近的硅晶片表面烧蚀出斑痕阵列,向下逐渐减小焦距,采集硅晶片斑痕图像,提取斑痕平均像素面积及斑痕目标与背景之间的R分量灰度差,获得斑痕像素面积及灰度差随激光束焦距变化的曲线;向上逐渐增大焦距,提取并获得斑痕像素面积及灰度差随激光束焦距变化的曲线。结合激光束向下离焦阈值(633 μm)及向上离焦阈值(993 μm),确定20 mW输出功率条件下,飞秒激光在硅晶片材料表面的有效烧蚀深度为360 μm。采用中位值方法确定了激光束在硅晶片表面聚焦时的焦距为0.823 mm。实验表明,激光烧蚀斑痕像素面积及灰度差与激光束焦距之间的关系能够客观地反映激光束有效烧蚀焦距的变化范围。  相似文献   

20.
Femtosecond laser micromachining together with Laser Induced Breakdown Spectroscopy (LIBS) allows us to drill precise hole in materials to internal buried layers as well as characterize the materials while drilling. We report detection of a metal layer buried deep inside silicon by creating an access hole through the semiconductor. We used 800 nm femtosecond laser pulses to carry out the drilling while monitoring the plasma emission with a spectrometer system. Higher drilling rates of 1 μm per shot were achieved using a Gaussian laser beam profile with peak fluences of 42 J/cm2. Lower drilling rates of 30 nm per pulse with better accuracy could be achieved using lower intensity flat top beam profiles at fluences of 1.4 J/cm2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号