首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The P-functional organotin dichloride [Ph2P(CH2)3]2SnCl2 (3) is synthesized by reaction of Ph2P(CH2)3MgCl with SnCl4 independently of the molar ratio of the starting compounds. The corresponding organotin trichlorides Ph2P(CH2)nSnCl2R (4: n=2, R=Cl; 5: n=3, R=Cl; 6: n=3, R=Me) are formed in a cleavage reaction of Ph2P(CH2)nSnCy3 (n=2, 3) with SnCl4 or MeSnCl3, respectively. The main features of the crystal structures of 3–6 are both intra- and intermolecular PSn coordinations and the existence of intermolecular Sn---ClSn bridges. For further characterization of the title compounds, the adducts 4(Ph3PO)2 (7) and 5(Ph3PO) (8), as well as the P-oxides and P-sulfides of 3–6 (9–15), are synthesized. The results of crystal structure analyses of 7, 11, 12, and 14 are reported. The structures of 9–15 are characterized by intramolecular P=XSn interactions (X=O, S). A first insight into the structural behavior of the compounds 3–15 in solution is discussed on the basis of multinuclear NMR data.  相似文献   

2.
The coordinating properties of the trifluoromethyl elemental compounds Me2PP(CF3)2 and Me2AsP(CF3)2 have been studied by the synthesis and spectroscopic investigations (IR, NMR, MS) of their complexes cis-M(CO)4L2 (A), [(CO)4ML]2 (B) and [(CO)5M]2L (C) (M = Cr, Mo, W). Complexes of type A with L = Me2PP(CF3)2 are obtained in good yield by reaction with M(CO)4NBD (NBD = norbornadiene), whereas with L = Me2AsP(CF3)2 the homobinuclear compounds B are formed. The attempt to prepare the cis-M(CO)4[Me2AsP(CF3)2]2 complexes by treating M(CO)4(Me2AsH)2 with P2(CF3)4 is successful only for M = W. Binuclear compounds of type B or C, in general, can be prepared by stepwise reaction of the ligands with either M(CO)4NBD or M(CO)5THF.  相似文献   

3.
The geometric structures and conformational properties of trifluoromethanesulfonic anhydride, (CF3SO2)2O, and bis(trifluoromethylsulfonyl)difluoromethane, (CF3SO2)2CF2 have been studied by gas electron diffraction (GED) and ab initio calculations (HF/3–21G*). The calculations predict for both systems two stable conformers with C2 symmetry and one with C1 symmetry. In both compounds structures with C2 symmetry and dihedral angles SOSC ≈ 100° ((CF3SO2)2O) and SCSC≈ 150° ((CF3SO2)2CF2 are lowest in energy. According to the GED analyses the dominant conformer of (CF3SO2)2O2 possesses C2 symmetry with SOSC dihedral angles of 99.1(14)°. The presence of up to 30% of the two other conformers cannot be excluded; for (CF3SO2)2CF2 only one conformer with C2 symmetry and SCSC dihedral angles of 143(2)° is observed. A complete set of geometric parameters is given.  相似文献   

4.
The geometric structures and conformational properties of trifluoromethanesulfonic anhydride, (CF3SO2)2O, and bis(trifluoromethylsulfonyl)difluoromethane, (CF3SO2)2CF2 have been studied by gas electron diffraction (GED) and ab initio calculations (HF/3–21G*). The calculations predict for both systems two stable conformers with C2 symmetry and one with C1 symmetry. In both compounds structures with C2 symmetry and dihedral angles SOSC ≈ 100° ((CF3SO2)2O) and SCSC ≈ 150° ((CF3SO2)2CF2) are lowest in energy. According to the GED analyses the dominant conformer of (CF3SO2)2O possesses C2 symmetry with SOSC dihedral angles of 99.1(14)°. The presence of up to 30% of the two other conformers cannot be excluded; for (CF3SO2)2CF2 only one conformer with C2 symmetry and SCSC dihedral angles of 143(2)° is observed. A complete set of geometric parameters is given.  相似文献   

5.
The compounds K4Ti(O2)4·2H2O, K3Ta(O2)2F4 and K2V2O3(O2)2F2 undergo photolysis in the solid state. The photolysis kinetics obey the parabolic rate equation p = kt1/2 and indicate a monoexcitation process for the photolysis. These features are similar to those reported previously for peroxo complexes. The mechanism of evolution of oxygen reported earlier appears to be the same in all these solids.  相似文献   

6.
Thermal displacement of coordinated nitriles RCN (R = CH3, C2H5 or n-C3H7) in [C5H5Fe(L2)(NCR)]X complexes (L2 = P(OCH3)3)2, (P(OC6H5)3)2 or (C6H5)2PC2H4P(C6H5)2 (DPPE)) by E(CH3)2 affords high yields of [C5H5Fe(L2)(E(CH3)2)]X compounds (E = S, Se and Te; X = BF4 or PF6). Spectroscopic data and ligand displacement reactions are presented and discussed together with related observations on [C5H5Fe(CO)2(E(CH3)2)]BF4 compounds. The molecular structure of [C5H5Fe(P(OCH3)3)2(S(CH3)2)]PF6 was determined by a single-crystal X-ray diffraction study: monoclinic, space group P21/n-C52h (No. 14) with a = 8.4064(12), b = 11.183(2), c = 50.726(8) Å, β = 90.672(13)° and Z = 8 molecules per unit cell. The coordination sphere of the iron atom is pseudo-tetrahedral with an Fe---S bond distance of 2.238 Å.  相似文献   

7.
Improved syntheses for the dimeric compounds [Pd2(μ-X)2(PBut3)2] (X = Br, I) have been developed and the X-ray crystal structure for the dimer with X = 1 is reported. The reactions of these dimers with CNR (R = 2,6-dimethylphenyl), H2 and a series of terminal and substituted alkynes are also reported. The dimer with X = Br is an initiator for the catalytic polymerisation of phenylacetylene. The product of the dimers with disubstituted alkynes results in the synthesis of trimeric species with formula [Pd3(μ-X){ν2-C4(CO2R)4}2][PBut3)Me]2 (X = Br, I; R = Me, Et). The X-ray crystal structure of one of these compounds (when R = Et and X = I) is presented, demonstrating that the palladium dimers assist the C---C coupling of the alkynes.  相似文献   

8.
A potentially decadentate ligand, 1,1,4,7,10,10-hexakis(3,5-dimethyl-1-pyrazolylmethyl)-1,4,7,10-tetraazadecane (tthd), has been synthesized from the reaction of tri-ethylenetetramine with six equivalents of N-hydroxymethyl-3,5-dimethylpyrazole. The tthd ligand forms coordination compounds, M2(tthd)(ClO4)4(H2O)x, when M is Co, Ni, Cu, Zn and Cd and x = 4–8; and M2(tthd)(A)2(ClO4)2(H2O)x when M is Co and Ni, A is NCS or Cl, and x = 4–8. The cobalt compound, Co2(tthd)(ClO4)2(H2O)2(MeOH)1.75, crystallizes in the triclinic space group P1, a = 1.959(2), b = 1.5657(3), c = 2.1244(3) nm, = 105.5(1), β = 96.9(1), γ = 112.1(1). Due to severe disorder of the anions the structure could only be refined to an Rw, value of 0.099. The ligand acts as a decadentate, dinucleating ligand. The cobalt ions are distorted octahedrally surrounded by five N-atoms of the tthd ligand and an O-atom of water occupying the sixth coordination place. The other perchlorate compounds have very similar structures, as can be concluded from spectroscopic data.

In the thiocyanate and chloride compounds the anions have replaced the coordinated water molecules, resulting in octahedral Ni compounds. With Co thiocyanate, however, tthd acts as an octadentate ligand, resulting only in five-coordinated compounds.  相似文献   


9.
Estertn compounds, (MeO2CCH2CH2)2SnX2 [X2 = I2 (2); X2 = Br2 (9); X2 = Cl, Br (4)) or X2 = (NCS)2 (3)] have been obtained by halide exchange reactions of (MeO2CCH2CH2)2SnCl2. Crystal structure determinations of 2–4 revealed chelating MeO2CCH2CH2 units with distorted octahedral geometries at tin. The Sn---O bond lengths in the isothiocyanato complex, 3, are shorter [2.390(11) to 2.498(12), mean 2.439 Å], with the chelate bite angles, C---Sn---O, larger [74.3(7) to 78.2(6), mean 76.0°] than those in the halide analogues 2 and 4 [Sn---O = 2.519(2) to 2.541(8), mean 2.530 Å; C---Sn---O 72.8(3) to 73.9(4), mean 73.3°]. 1H, 13C and 119Sn NMR and IR spectra of 2–4 and 9 were determined in CDCl3 solution: the NMR spectra of (MeO2CCH2CH2)2SnX2 show the following trends: (i) both δ1H and δ13C, increase and (ii) both 2J (Sn---H) and 1J(Sn---C) decrease in the sequence X2 = (NCS)2, Cl2, ClBr, Br2 and I2. The MeO2CCH2CH2 and dmio groups (dmio = 1,3-dithiole-2-one-4,5-dithiolato) are all chelating groups in (MeO2CCH2CH2)2Sn(dmio) (5). As shown by X-ray crystallography, the tin atom in the anion of solid [Q][MeO2CCH2CH2Sn(dmio)2] 6 (Q = NEt4) forms 5 strong bonds [to C and the 4 thiolato S atoms, Sn---S 2.459(2) to 2.559(2) Å], arranged in a near trigonal bipyramidal array. There is an additional Intramolecular but weaker, interaction with the carbonyl oxygen atom [Sn---O = 3.111(5) Å]; v(C=O) = 1714 cm−1 in solid 6 (Q = NEt4). NMR spectra of 5 and 6 are also reported.  相似文献   

10.
Two single crystals[Ln(TBPO)4(NO3)2]NTf2 (Ln=Eu, Gd) were prepared and characterized by element analysis, single crystal X-ray diffraction, PXRD, FT-IR, TGA and fluorescence spectroscopy. The two compounds have similar coordinate structures, in which the central metal ion is coordinated by four TBPO (Tri-n-butylphosphine oxide) molecules and two bidentate nitrates, while NTf2-(bis(trifluor-(bis(trifluoromethylsulfonyl) imide anion) acts as the counter anion. The packing modes of the two crystals are same. The two single crystals are the focus on 8-coordinate tetra-TRPO complexes (TRPO is Trialkyphosphine oxides).  相似文献   

11.
The reaction between Ru2Cl(μ-O2CCH3)4 and molten p-tert-butylbenzamide led to the formation of Ru2Cl(μ-HNOCC6H4-p-CMe3)4. The polymeric structure of this insoluble compound was broken with AgBF4, in anhydrous thf, giving [Ru2(μ-HNOCC6 H4-p-CMe3)4(thf)2]BF4. The reaction of this cationic complex with OPPh3 gave [Ru2(μ-HNOCC6H4-p-CMe3)4(OPPh3)2]BF4. The compounds have been characterized by elemental analysis, spectroscopic data and magnetic measurements and the crystal structure of [Ru2(μ-HNOCC6H4-p-CMe3)4(OPPh3)2]BF4 was determined by X-ray crystallography. The asymmetric unit is composed of halves of two different crystallographically independent centrosymmetric cations. Each ruthenium(II,III) dimer is bonded to four bridging p-tert-butylbenzamidate ligands and to two axial triphenylphosphine oxide molecules. The Ru---Ru distances in the two dimeric cations of the unit cell are 2.281(2) and 2.280(2) Å. The compound has a non-polar 2 : 2 arrangement of the tert-butylbenzamidate ligands.  相似文献   

12.
The electrical conductivities of the compounds (CH3NH3)2CuCl4, (C2H5NH3)2CuCl4 and (CH2)2(NH3)2CuCl4 were measured in the temperature range which includes their structural phase transition. The values of the activation energies as calculated from the Arrhenius equation are reported. Confirmation of the phase transition temperatures is carried out using differential thermal analysis in the same temperature range as the conductivity measurements.  相似文献   

13.
Hafnium β-diketonatochlorides HfCl2(thd)2 (1), HfCl(thd)3 (2) as well as β-diketonato-silylamide and/or siloxide derivatives of 1 namely Hf(thd)2[N(SiMe3)2]2 (3), Hf(thd)2(OSiMe3)2 (4) and Hf(thd)2(OSitBuMe2)2 (5) (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) were synthesized and characterized by elemental analysis, FT-IR, 1H NMR and TGA. 2 and 5 were also characterized by single-crystal X-ray diffraction. The siloxide ligands are in cis position for 5 and exert a strong trans effect. The new volatile compounds were tested as single-source precursors for the deposition of HfSixOy films by pulsed liquid injection MOCVD on Si(1 0 0) and R plane sapphire. The as-deposited at 600–800 °C films were essentially amorphous, Hf-rich (Hf/Hf + Si = 0.7–0.85) and smooth.  相似文献   

14.
A series of novel arylantimony(V) triphenylgermanylpropionates with the formula (Ph3GeCHR1CHR2CO2)nSbAr(5−n) (R1=H, Ph; R2=H, CH3; n=1, 2) were synthesized and characterized by elemental analysis, IR, 1H-NMR, 13C-NMR and mass spectroscopy. The crystal structures of Ph3GeCH(Ph)CH2CO2SbPh4 and [Ph3GeCH2CH(CH3)CO2]2Sb(4-ClC6H4)3 were determined by X-ray diffraction. The in vitro antitumor activities of some selected compounds against five cancer cells are reported.  相似文献   

15.
(C6H5)3MX2 (M = As, Sb; X = OCOCF3 and M = Sb, Bi; X = SO3F, SO3CF3) compounds prepared by the interaction of triphenylmetal(V) substrates with (CF3CO)2O, (CF3SO2)2O and (FSO2)2O have been characterized by molecular weight determination, elemental and spectroscopic (IR, 1H and 19F NMR, mass) analyses.  相似文献   

16.
The sterically hindered zinc chalcogenolato complexes [Zn(EAr″)2]2 (E = S, Se; Ar″ = 2,4,6-But3C6H2) react with 1 equivalent of tert-butylisocyanide in non-coordinating solvents to give Zn(EC6H2But3)2(CNBut) (1, E = S; 2, E = Se) as thermally stable crystalline adducts; the compounds are thought to be chalcogenolato-bridged dimers. In the presence of excess isocyanide ligand the 1 : 2 adducts Zn(EAr″)2(CNBut)2 (3, E = S; 4, E = Se) are isolated. The compounds represent the first examples of well-characterized isocyanide complexes of zinc. The X-ray structure of 4 showed that it is monomeric with a distorted tetrahedral coordination geometry of the metal centre, which reflects the steric requirements of the chalcogenolato and isocyanide ligands, respectively.  相似文献   

17.
Toluene solutions of M2(NMe2)6 (M = Mo, W) react with mesitylene selenol (Ar′SeH) to give M2(SeAr′) 6 complexes. MO2(OR)6 (R = tBu, CH2tBu) react with excess> 6 fold) Ar′SeH to give Mo2 (SeAr′)6, whilst W2(OR)6(py)2 (R = iPr, CH2tBu) react with excess (> 6 fold) Ar′SeH to give W2(OR)2(SeAr′)4. Reaction of MO2(OPri)6 with Ar′SeH produces Mo2(OPri)2 (SeAr′)4 which crystallizes in two different space groups. These areneselenato complexes are air-stable and insoluble in common organic solvents. X-ray crystallographic studies revealed that the Mo2(SeAr′)6 and W2(SeAr′)6 compounds are isostructural in the solid state and adopt ethane-like staggered configurations with the following important structural parameters, M---M (W---W/Mo---Mo) 2.3000(11)/2.2175(13) Å, M---Se 2.430 (av.)/2.440 (av.) Å, M---M---SE 97.0° (av.)°. In the solid state W2(OiPr)2(SeAr′)4 adopts the anti-configuration with crystallographically imposed Ci symmetry and W---W 2.3077(7) Å, W---Se 2.435 (av.) Å, W---O 1.858(6) Å; W---W---SE 100.27(3)°, 93.8(3)° and W---W---O 108.41(17)°. Mo2(OPri)2(SeAr′) 4 crystallizes in both P and A2/a space groups in which the molecules are isostructural with each other and the tungsten analogue. Important bond lengths and angles are Mo---Mo 2.180(24) Å, Mo---Se 2.432(av.) Å, Mo---O 1.872(9) Å, Mo---Mo---Se 99.39(9)°, 94.71(8)°, Mo---Mo---O 107.55(28)°.  相似文献   

18.
Using pseudopotentials and double zeta basis sets with s, p diffuse functions and two sets of d functions, MRD-CI calculations were performed on As2(±), As4(+), GaAs, GaAs2(±) and Ga2As2(±). This study complements previous theoretical investigations on Ga(±) to Ga4(±) and GaAs(+). For As4 tetrahedral symmetry was assumed, and Re of X1A1 determined as 4.73a0. Vertical ionization potentials to several states of As4+ were calculated. For GaAs2, GaAs2+ and GaAs2, ground and one low-lying state were geometry-optimized, both in C2v (Ga-As-As), and linear symmetry (GaAsAs, C∞h and AsGaAs, D∞h). The lowest state of GaAs2 is 2B2 in C2v. For Ga2As2, the lowest state and low-lying excited states were optimized in various geometries. The most stable state has rhombic structure (1Ag in D2h), but T-form and other forms (C2v, C∞v, D∞h) are only 1–2 eV less stable. In D2h symmetry, several low-lying excited states of Ga2As2 were studied. The ground states of Ga2As2+ and Ga2As2 were found to be 2B2u, and 2B2g, respectively. Trends in ionization potentials (IP), electron affinities (EA), atomization energies and fragmentation energies for the molecules GaxAsy and the pure compounds Gan and Asn up to 4 atoms, were studied. GaxAsy clusters, with x + y even, have higher IP's than odd-numbered clusters. An experimentally observed alternation of EA, whereby an odd number of atoms have higher EA than their even neighbors, is confirmed. The mixed compounds GaxAsy have atomization energies between those of Gan and Asn (x + y = n), usually closer to those of Gan. Fragmentation of GaxAsy occurs such that As----As bonds are retained, and if possible, also Ga----As bonds, since the dissociation energy of As2 is higher than that of GaAs, which in turn is higher than that of Ga2. Calculated fragmentation energies agree qualitatively with experimental observations about the composition of 3-atomic and 4-atomic clusters GaxAsy.  相似文献   

19.
The complex (di-η5-C5H4CH2CH2CH2C5H4)Ti(η1-C5H5)2 (I) can be obtained unambiguously starting from the corresponding bridged titanocene dichloride. Attempts to synthesize the isomeric compounds (η5-C5H5)2 Ti(di-η1-C5H4-CH2CH2CH2C5H4) (I′) by the action of a convenient bridged dianion on (C5H5)2 TiCl2 afford several compounds, one of them is the complex I. The possibility of interconversion of these complexes by a fluctional process is discussed.  相似文献   

20.
The reactions of (Me2AlH)3 with Me2AsNMe2, MeAs(NMe2)2, and As(NMe2)3 were investigated as a function of time at room temperature and over the temperature range −90 to 24°C by use of 1H and 13C NMR spectroscopy. (Me2AlH)3 was found to be very reactive toward the aminoarsines, even at −90°C, and no stable Me2AlH-aminoarsine adducts were observed. Instead, the initial stages of the reactions involved AS---N bond cleavage with the generation of highly reactive AlN- and AsH-bonded species. The subsequent course of each reaction and the final arsenic-containing product distribution depended upon the original AL:N stoichiometric ratio and the respective aminoarsine. When the Al:N ratio was 1:1, the reactions were straightforward for each aminoarsine. However, in every case, [Me2AlNMe2]2 was the final AlN-containing product. Independent reactions were carried out to verify many of the proposed decomposition pathways that lead to thermodynamically stable products. The results of this study are compared with those of the analogous, previously reported (Me3Al)2-aminoarsine systems. Additionally, a new synthetic route to [Me2AlAsMe2]3 has been established from the reaction of (Me2AlH)3 with Me2AsH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号