首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Under the condition that all the perfectly plastic stress components at a crack tip are the functions of θ only, making use of equilibrium equations and Von-Mises yield condition containing Poisson ratio, in this paper, we derive the generally analytical expressions of perfectly plastic stress field at a stationary plane-strain crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the stationary tips of Mode Ⅰ, Mode Ⅱ and Mixed-Mode Ⅰ-Ⅱ plane-strain cracks are obtained. These analytical expressions contain Poisson ratio.  相似文献   

2.
Under the condition that all the perfectly plastic stress components at a crack tip are the functions of only, making use of the Treasca yield condition, steady-state moving equations and elastic perfectly-plastic constitutive equations, we derive the generally analytical expressions of perfectly palstic stress field at a rapidly propagating plane-stress crack tip. Applying these generally analytical expressions to the concrete crack, we obtain the analytical expressions of perfectly plastic stress field at the rapidly propagating tips of models I and II plane-stress cracks.  相似文献   

3.
Under the condition that any perfectly plastic stress components at a crack tip are nothing but the functions of 0 only making use of equilibrium equations. Hill anisotropic yield condition and unloading stress-strain relations, in this paper, we derive the general analytical expressions of anisotropic plastic stress fields at the slowly steady propagating tips of plane and anti-plane strain. Applying these general analytical expressions to the concrete cracks, the analytical expressions of anisotropic plastic stress fields at the-slowly steady propagating tips of Mode I and Mode III cracks are obtained. For the isotropic plastic material, the anisotropic plastic stress fields at a slowly propagating crack tip become the perfectly plastic stress fields.  相似文献   

4.
Under the condition that all the perfectly plastic stress components at a crack tiP arethe functions ofθonly,making use of the Mises yield condition,steady-state movingequations and elastic perfectly-plastic constitutive equations,we derive the generallyanalytical expressions of perfectly plastic fields at a rapidly propagating plane-stress cracktip.Applying these generally analytical expressions to the concrete crack,we obtain theanalytical expressions of perfectly plastic fields at the rapidly propagating tips of,modesⅠandⅡplane-stress cracks.  相似文献   

5.
On condition that any perfectly plastic stress component near a singular point is nothing but the function of θ only, making use of equilibrium equations and Hill anisotropic yield condition, we derive the general analytical expressions of the anisotropic plastic stress field near a singular point in both the cases of anti-plane and in-plane strains. Applying these general analytical expressions to the concrete cracks and the plane-strain bodies with a singular point, the anisotropic plastic stress fields at the tips of Mode Ⅰ, Mode Ⅱ, Mode Ⅲ and mixed mode Ⅰ-Ⅱ cracks, and the limit loads of anisotropic plastic plane-strain bodies with a singular point are obtained.  相似文献   

6.
On condition that any perfectly plastic stress component at a crack tip is nothingbut the function ofθ.by making use of equilibrium equations,anisotropic plastic stress-strain-rate relations,compatibility equations and Hill anisotropic plastic yieldcondition,in the present paper,we derive the generally analytical expressions of theanisotropic plastic stress field at a mixed-mode crack tip under plane and anti-planestrain.Applying these generally analytical expressions to the mixed-mode cracks,wecan obtain the analytical expressions of anisotropic plastic stress fields at the tips ofmixed-modeⅠ-Ⅲ,Ⅱ-ⅢandⅠ-Ⅱ-Ⅲcracks.  相似文献   

7.
Under the condition that any Perfectly plastic stress component at a crack tip isnothing but the function of θ only. making use of equilibrium equations, stress-strain-rate relations, compatibility equations and yield condition. in this paper. we derive thegeneral analytical expressions of the perfectly plastic stress field at a Mixed-Mode cracktip under plane and anti-plane strain. Applying this general analytical expressions to theMixed-Mode cracks. we can obtain the analytical expressions of perfectly plastic stressfields at the tips of Mixed-ModeⅠ-Ⅲ.Ⅱ-Ⅲ andⅠ-Ⅱ-Ⅲ cracks.  相似文献   

8.
All the stress components at a rapidly propagating crack-tip in elastic perfectly-plasticmaterial are the functions ofθonly.Making use of this condition and the equations ofsteady-state motion,plastic stress-strain relations,and Mises yield condition with Poissonratio,in this paper,we derive the general expression of perfectly plastic field at a rapidlypropagating plane-strain crack-tip.Applying this general expression with Poisson ratio toModeⅠcrack,the perfectly plastic field at the rapidly propagating tip of ModeⅠplane-strain crack is obtained.This perfectly plastic field contains a Poisson ratio,and thus,wecan obtain the effect of Poisson ratio on the perfectly plastic field at the rapidly propagatingtip of ModeⅠplane-strain crack.  相似文献   

9.
The complex stress intensity factor K governing the stress field of an interface crack tip may be split into two parts, i.e.,■ and s~(-iε), so that K = ■ s~(-iε), s is a characteristic length and ε is the oscillatory index. ■ has the same dimension as the classical stress intensity factor and characterizes the interface crack tip field. That means a criterion for interface cracks may be formulated directly with■, as Irwin(ASME J. Appl. Mech. 24:361–364, 1957) did in 1957 for the classical fracture mechanics. Then, for an interface crack,it is demonstrated that the quasi Mode I and Mode II tip fields can be defined and distinguished from the coupled mode tip fields. Built upon SIF-based fracture criteria for quasi Mode I and Mode II, the stress intensity factor(SIF)-based fracture criterion for mixed mode interface cracks is proposed and validated against existing experimental results.  相似文献   

10.
All the stress components at a rapidly propagating crack-tip in an elastic perfectly-plastic material are the functions of only. Making use of this condition and the equations of steady-state motion, stress-strain relations and Hill anisotropic yield condition, we obtain the general solutions in both the cases of anti-plane and in-plane strain. Applying these two general solutions to propagating Mode III and Mode I cracks, respectively, the anisotropic plastic stress fields at the rapidly propagating tips of Mode III and Mode I cracks are derived.  相似文献   

11.
Experimental results suggest that the interfacial fracture resistance is minimal for approximate near tip Mode I accompanied by positive and negative near tip Mode II. Finite-strain FE analysis is made for an elastic–plastic medium bonded to an ideally elastic medium with an interface crack. Small-scale plasticity conditions are invoked and examined in relation to the elastic–plastic stress distribution along the bond line. Plasticity engenders a tendency to turn near tip biaxiality towards pure Mode I regardless of the mixed-mode loading. High levels of hydrostatic stress are attained. For different mode mixities of the applied load, the dependence of the elastic–plastic normal bond stress on load level is examined. It is found that under positive Mode II loading, the normal bond stress σyy tends to saturate as the load level rises. This does not occur for Mode I and negative Mode II loading. In addition, deformation patterns inside the plastic zone are examined for mixed-mode situations. A displacement criterion based on the normal bond crack opening suggests a dependence of the critical load level on the extent of mixed mode. Under positive mode II fracture, traces of the ductile material are found at the top of the elastic substrate. Some of these conclusions appear to be consistent with the fracture patterns observed for LD-polyethylene/glass interfacial mixed-mode fracture.  相似文献   

12.
Turbo-generator shafts are often subjected to complex dynamic torsional loadings, resulting in generation and propagation of circumferential cracks. Mode III fatigue crack growth generally results in a fracture surface consisting of peaks and valleys, resembling a factory roof. The fracture surface roughness depends on the material microstructure, the material yield strength, and the applied cyclic torque amplitude. This crack pattern can severely affect the vibration characteristics of the shafts. The accurate evaluation of the torsional dynamic response of the turbo-generator shafts entails considering the local sources of energy loss in the crack vicinity. The two most common sources of the energy loss are the local energy loss due to the plasticity at the crack tip and frictional energy loss due to interaction of mutual crack surfaces. A theoretical procedure for evaluating the values of the system loss factors corresponding to these sources of energy loss is presented. Furthermore, the local flexibility is obtained by evaluating the resistance of the cracked section of the shaft to the rotational displacement. The shaft material is assumed to be elastic perfectly plastic. The effects of the applied Mode III stress intensity factor and the crack surface pattern parameters on the energy loss due to the friction and the energy loss due to the plasticity at the crack tip are investigated. The results show that depending on the amplitude of the applied Mode III stress intensity factor, one of these energy losses may dominate the total energy loss in the circumferentially cracked shaft. The results further indicate that the torsional dynamic response of the turbo-generator shaft is significantly affected by considering these two sources of the local energy loss.  相似文献   

13.
Summary A method is presented to analyze elastodynamic stress intensity factors at the tip of a branch which emanates at velocity v and under an angle from the tip of a semi-infinite crack, when the faces of the semi-infinite crack are subjected to impulsive normal pressures. By taking advantage of self-similarity, the system of governing equations is reduced to a set of two Laplace's equations in half-plane regions. The solutions to these equations, which are coupled along the real axes of the half-planes, are obtained by using complex function theory together with summations over Chebychev polynomials. For small values of the Mode I and Mode II stress intensity factors and the corresponding flux of energy into the crack tip have been computed.  相似文献   

14.
In [1], under the condition that all the perfectly plastic stress components at a crack tip are functions of ϕ only, making use of equilibrium equations, stress-strain rate relations, compatibility equations and yield condition. Lin derived the general analytical expressions of the perfectly plastic stress field at a mixed-mode crack tip under plane and anti-plane strain. But in [1] there were several restrictions on the proportionality factor γ in the stress-strain rate relations, such as supposing that γ is independent of ϕ and supposing that γ=c or cr−1. In this paper, we abolish these restrictions. The cases in [1], γ=crd (n=0 or-1) are the special cases of this paper.  相似文献   

15.
The physical nature of a crack tip is not absolutely sharp but blunt with finite curvature. In this paper, the effects of crack-tip shape on the stress and deformation fields ahead of blunted cracks in glassy polymers are numerically investigated under Mode I loading and small scale yielding conditions. An elastic–viscoplastic constitutive model accounting for the strain softening upon yield and then the subsequently strain hardening is adopted and two typical glassy polymers, one with strain hardening and the other with strain softening–rehardening are considered in analysis. It is shown that the profile of crack tip has obvious effect on the near-tip plastic field. The size of near-tip plastic zone reduces with the increase of curvature radius of crack tip, while the plastic strain rate and the stresses near crack tip enhance obviously for two typical polymers. Also, the plastic energy dissipation behavior near cracks with different curvatures is discussed for both materials.  相似文献   

16.
An asymptotic solution is given for Mode II dynamic fields in the neighborhood of the tip of a steadily advancing crack in an incompressible elastic—perfectly-plastic solid (plane strain). It is shown that, like for Modes I and III (Gao and Nemat-Nasser, 1983), the complete dynamic solution for Mode II predicts a logarithmic singularity for the strain field, but unlike for those modes which involve no elastic unloading, the pure Mode II solution includes two elastic sectors next to the stress-free crack surfaces. This is in contradiction to the quasi-static solution which predicts a small central plastic zone, followed by two large elastic zones, and then two very small plastic zones adjacent to the stress-free crack faces. The stress field for the complete dynamic solution varies throughout the entire crack tip neighborhood, admitting finite jumps at two shock fronts within the central plastic sector. This dynamic stress field is consistent with that of the stationary crack solution, and indeed reduces to it as the crack growth speed becomes zero.  相似文献   

17.
The numerical analyses of stationary mathematically sharp Mode I crack in FCC and BCC crystals with elastic-ideally plastic (EIP) and fast hardening saturation (FHS) law are carried out in the present paper. From the calculated results, it is shown that: for the cases of small strain, EIP crystal cracks, the features of concentrated deformation patterns and the stress state in near-crack tip deformation fields are identical to the earlier analytical solutions, but along the angular sector boundaries, there exist narrow complex stress zones. The overall characteristics of deformation patterns for the cases of EIP and FHS are similar. The behaviours of crack tip opening can be characterized by crack-tip-opening-displacement (CTOD). For the case of FHS, finite deformation BCC crystal crack, our calculations are qualitatively in agreement with recent experimental observations. The project supported by National Natural Science Foundation of China  相似文献   

18.
Conclusion We have constructed a model of the growth of a fatigue crack in a thin, isotropic plate, taking the two-stage evolution of the fracture process into account. The model is based on concepts of the mechanics of a continuous defective state and on a schematic representation of the neighborhood of the tip of a fatigue crack as a plastic zone moving together with the crack. The model takes into account the influence of the cumulative defective state (damage level) along the crack propagation front on the speed of propagation.We have formulated solutions for the cases when the length of the plastic zone is constant and when it varies during the growth of fatigue cracks. We have established the fact that the plastic zone at the crack tip tends to disrupt the stability of the motion immediately at the time of inception or opening of the crack. The speed of crack propagation decreases as the plastic zone grows in size.We have shown that the problem of estimating the kinetics of fatigue cracks in thin plates can be reduced to calculating the growth rate as a function of the peak-to-peak amplitude of the stress intensity factor while preserving the structure of the governing equations of the model. We have also shown that the concept of a plastic zone of constant length induces a power-law dependence of the crack rate on K, the power exponent varying from 2 to 10–12. The Dugdale model gives a square-law dependence of the crack rate on K, which for the most part is applicable to plastic materials.S. P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine, Kiev. Translated from Prikladnaya Mekhanika, Vol. 30, No. 7, pp. 53–63, July, 1994.  相似文献   

19.
Effect of electric current on migration of point defects near a crack tip   总被引:1,自引:0,他引:1  
The effect of direct current on migration of point defects dissolved in a crystal near the tip of a crack in tension is estimated. Calculations are carried out with allowance for the plastic strain near the crack tip of a loaded specimen, caused by the motion of dislocations in the active slip planes of the crystal, the Joule heat released, and the effect of gas exchange on the crack edges on the evolution of distribution of interstitial impurity atoms. A numerical analysis is performed for an Fe crystal.  相似文献   

20.
Based on stress field equations and Hill yield criterion, the crack tip plastic zone is determined for orthotropic materials and isotropic materials under small-scale yielding condition. An analytical solution to calculating the crack tip plastic zone in plane stress states is presented. The shape and size of the plastic zone are analyzed under different loading conditions. The obtained results show that the crack tip plastic zones present “butterfly-like” shapes, and the elastic–plastic boundary is smooth. The size of the plastic zone for orthotropic composites is less at the crack tip for various loading conditions, compared with the case of isotropic materials. Crack inclination angle and loading conditions affect greatly the size and shape of crack tip plastic zone. The mode I crack has a crucial effect on the plastic zone for mixed mode case in plane stress state. The plastic zone for pure mode I crack and pure mode II crack have a symmetrical distribution to the initial crack plane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号