首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
严重段塞流是海洋工程气液混输管线--立管系统中常见的一种特殊有害流动现象, 采用水平--下倾--悬链线立管气液混输组合管道系统, 通过系列实验在悬链线立管中获得了严重段塞流、间歇流和震荡流等流型, 阐述了这些流动现象的形成机理, 提出了能够产生严重段塞流的判定准则. 结果表明, 悬链线立管严重段塞流具有明显周期性, 在一个周期内的流动特征可分为液塞形成、液体出流、液气喷发及液体回流等4个阶段, 进而给出了各阶段中相关流动参数的变化规律. 在实验中同时还对悬链线与垂直立管中严重段塞流形成机理进行了比较分析, 发现两者在液塞形成阶段有显著差别. 其中, 在悬链线立管中液塞形成之前首先需要经历一个气液混合液塞形成过程, 而垂直立管则没有这个过程.   相似文献   

2.
The results of two-phase flow structure measurements in an upward gas-liquid flow in a 86.4 mm i.d. tube by the electrochemical and conductivity techniques are presented. Measurements were made in bubble and slug flow regimes at liquid flow rates ranging from 0.2 to 2 m/s.The flow instability and ambiguity in a bubble regime at low velocities is shown to exist. Great discrepancy between measured wall shear stress values and those predicted by the Lockhart-Martinelli model are due to the nonuniform distribution of gas over the tube cross section. Measurements of intensity of wall shear stress and liquid velocity fluctuations in a two-phase flow are presented.  相似文献   

3.
A model of heat transfer during gas hydrate formation at a gas-liquid interface in gas-liquid slug flow is suggested. Under the assumption of perfect mixing in liquid plugs, the recurrent relations for temperature in then-th liquid plug and heat and mass fluxes from then-th gas slug are derived. Total mass and heat fluxes in gas-liquid slug flow during gas hydrate formation are determined.  相似文献   

4.
基于液滴或气泡的多相微流控是近年来微流控技术中快速发展的重要分支之一.本文利用高速显微摄影技术和数字图像处理技术对T型微通道反应器内气液两相流动机制及影响因素进行实验研究.实验采用添加表面活性剂的海藻酸钠水溶液作为液相,空气作为气相.研究T型微通道反应器内气液两相流型的转变过程,并根据微通道内气泡的生成频率和生成气泡的长径比对气泡流进行分类.研究发现当前的进料方式下,可以观测到气泡流和分层流2种流型,且依据气泡生成频率和微通道内气泡的长径比可将气泡流划分为分散气泡流、短弹状气泡流和长弹状气泡流3种类型,并基于受力分析确定3种气泡流的形成机制分别为剪切机制、剪切-挤压机制和挤压机制.考察不同液相黏度和表面张力系数对不同类型气泡流范围的影响规律.结果表明:液相黏度相较于表面张力系数而言,对气泡流生成范围影响更大.给出不同类型气泡流流型转变条件的无量纲关系式,实现微通道生成微气泡过程的可控操作.   相似文献   

5.
通过气液两相螺旋流实验仪器,研究具有可降解性的天然椰子油新型添加剂对于气液两相螺旋流流型影响以及流型的转变规律,并与表面活性剂十二烷基苯磺酸钠(SDBS)进行对比研究。实验工况设定为:实验介质为空气和水,含气率10%~90%,气相折算速度0.01~4.0m/s,液相折算速度0.01~4.0m/s,表面活性剂采用从植物提取的可降解性椰子油和SDBS,起旋装置为叶轮。实验观察到天然椰子油对于螺旋轴状流、螺旋团状流、螺旋弥散流转换特性的影响与SDBS的效果相类似,该三种流型发生条件相比于以往都有所提前,且存在范围被拓宽。浓度为500ppm时椰子油体系下的主要流型为螺旋弥散流,而SDBS体系下则以螺旋团状流为主。  相似文献   

6.
下倾管-立管水气严重段塞流数值模拟   总被引:1,自引:0,他引:1  
高嵩  尤云祥  李巍  胡天群  俞忠 《力学学报》2011,43(3):468-475
针对海洋油气传输中常见的下倾管-立管系统, 采用Brackbill模型模拟气液相界面间表面张力, VOF方法追踪气液两相运动界面, 提出了管内气液两相流数值模拟方法. 在低气液相进口折算速度下, 数值模拟了该种管型下的严重段塞流动现象, 分析了相关物理参数的变化特性. 结果表明, 在严重段塞流下, 管内流型流态、压力、液塞运动速度、立管出口气液相平均速度、下倾管及立管内含气率等均具有明显周期性特征, 而且一个周期内严重段塞流可分为4个阶段, 进而给出了各阶段中相关参数的变化特性. 数值模拟结果与相关文献中的实验结果吻合良好,表明了该数值模拟方法的有效性.   相似文献   

7.
In supersonic adiabatic two-phase flows of steam, under the influence of supersonic acceleration, the fluid loses its equilibrium conditions and becomes supersaturated. Following this condition and to restore the fluid to equilibrium, micro droplets of water form in the absence of any surface or foreign particles. This phenomenon is called homogeneous nucleation and the formed minute small droplets grow along the fluid flow path. The formation of these droplets and their growth causes the release of the latent heat of evaporation to the gas phase particularly in the nucleation region, and results in an increase in the flow pressure which is called the condensation shock. In this paper, and in continuation of the series of papers by the authors, in addition to analytically solving the adiabatic gas-liquid supersonic flow of steam in a convergent-divergent channel, a novel solution to controlling the undesired effects of this pressure rise (condensation shock) is presented. In the proposed method, with the help of cooling the divergent section of the nozzle, the analytical model for the 1D non-adiabatic two-phase steam flows is further developed which shows considerable decrease in the intensity of the formed condensation shock. Also the growth rate of the formed droplets due to the cooling of the steam flow has higher importance than the nucleation itself.  相似文献   

8.
A model is developed for the analysis of mass transfer during isothermal absorption in a vertical gas-liquid slug flow at large Reynolds numbers with liquid plugs containing small bubbles. Simple formulas for mass flux from the N-th unit cell of gas-liquid slug flow and for total mass flux from N unit cells are derived. In the limiting case the derived formulas for mass transfer during gas absorption in a slug flow with liquid plugs containing small bubbles recover the derived expressions for mass transfer in slug flow without small bubbles in the liquid plugs. Using the developed model recommendations concerning the design of the absorber operating in a slug flow regime are suggested. Received on 28 July 1997  相似文献   

9.
微重力条件下气/液两相流流型的研究进展   总被引:19,自引:2,他引:17  
赵建福 《力学进展》1999,29(3):369-382
气/液两相流流型是两相流研究领域最基本的课题之一,至今已有数十年的研究历史.但是,由于气/液两相流动现象极为复杂,目前还没有得到一致的结论.近十多年来,利用微重力环境减弱甚至完全消除重力的影响,简化流动中各种不同因素间的相互作用及流型特征,大大促进了对气/液两相流动特征及流型产生与转换机理的研究.同时,微重力条件下的气/液两相流动是空间技术领域必须解决的关键技术问题之一,具有重要的学术意义和重大的应用价值.本文简要总结了微重力条件下气/液两相流流型研究的基本方法以及实验结果和理论进展,指出今后研究中应该注意的一些方向.   相似文献   

10.
A study is made of the intensity of a hydroshock in a two-phase gas-liquid mixture in a slug flow regime in the case when a pipeline is shut off by a liquid slug. The intensity is studied as a function of the length of the shut-off section of the liquid slug, the content of gas bubbles in the liquid slugs, and the pipeline shut-off law, and with allowance for the shock-wave character of the process [1, 2]. The calculated data using the shock-wave theory agree well with the experimental data of [3] and, unlike the results of the linear theory of [3], make it possible to determine the intensity of the hydroshock not only in the case of weak waves, but also in the case of waves of moderate intensity.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 188–190, September–October, 1985.  相似文献   

11.
欧阳伟平  张冕  孙虎 《力学学报》2016,48(2):464-472
多段压裂水平井技术是目前开采致密气最常用的方法之一,在致密气压裂水平井试井测试中常常伴随着一定的产水量,井筒气液两相流会增加井筒流体的流动阻力,加大井筒流体流动对试井解释的影响.为了明确井筒气液两相流对致密气藏压裂水平井试井的影响,提高产水致密气压裂水平井的试井解释精度,建立了一种井筒气液两相流与地层渗流耦合的试井模型,采用数值方法对模型进行求解,获得了考虑井筒气液两相流的压裂水平井试井理论曲线、压力场分布及裂缝产量分布.研究结果表明:井筒气液两相流会增加试井理论曲线中压力和压力导数值,造成靠近入窗点的压力扩散要快于远离入窗点的压力扩散,引起靠近入窗点的裂缝产量要高于远离入窗点的裂缝产量.现场实例分析进一步说明,不考虑井筒两相流可能会对产水压裂水平井的试井解释结果产生很大误差,主要表现为水平井筒假设为无限大导流能力会使得拟合得到的表皮系数偏大,将测试点视为入窗点会使得拟合得到的原始地层压力偏小.所建立的考虑井筒两相流的压裂水平井试井模型为产水致密气井试井资料的正确解释提供了重要技术保障.   相似文献   

12.
This paper presents an experimental study of the structure of an upward gas-liquid flow in a vertical microchannel with a cross-sectional dimension of 0.67 × 2.00 mm and a length of 0.5 m. The tests were performed in the ranges of reduced rates of nitrogen 0.04–11.00 m/sec and water 0.07–0.41 m/sec. Using the method of two-beam laser scanning, we identified the main flow regimes (slug-bubble, slug, transient, emulsion, and annular) and determined the statistical characteristics of the two-phase flow. A map of flow regimes was constructed, the dependence of slug velocity on the reduced mixture velocity was obtained, and the friction factor for an upward gas-liquid flow in a microchannel was measured.  相似文献   

13.
One of the flow regimes occurring in horizontal two-phase flows is characterized by periodic large waves “surging” along the tube. This flow, called “slug” flow, has been frequently observed in low and high pressure gas liquid systems, but it has been noticed that slugging is absent in certain liquid-liquid two-phase systems. A method is developed giving the necessary conditions for the presence of slug flow. This method quantitatively explains the observed absence of slugging in certain liquid-liquid flows.  相似文献   

14.
刘赵淼  刘佳  申峰 《力学学报》2015,47(2):223-230
研究了不同重力条件下90°弯管内气液两相流流型分布形态及流动特性. 通过建立90°弯管内气液两相流流动的三维数学物理模型,采用VOF 方法,对10-6g0, 10-4g0, 10-2g0, 1g0 (g0= 9.8m/s2) 重力下的90°弯管内气液两相流流型分布特征、截面空隙率、滑速比及气相尾部最大斜向角进行了比较分析. 研究结果表明:所建立的模型能够正确模拟不同重力条件下90°弯管内气液两相流流型和截面空隙率,并得到气液两相弯管二次流与单相二次流的不同特性. 随着重力水平的提高,90°弯管对气相流型的影响作用减弱,气相整体向弯管内侧积聚靠拢,弯管对尾部的斜向作用减弱.   相似文献   

15.
The Butterworth form of correlation for holdup in two-phase gas-liquid flow is justified theoretically for certain conditions. In addition, a wide range of experimental data were used to show that holdup data may be broadly classified into three major groups based on the flow pattern, and different relationships were found to represent the data in each group. Thus for slug and plug flow, the holdup is given by the Armand type of equation; for stratified flow the holdup is given by the theoretical equations which are derived while annular flow data are satisfactorily represented by a semi-empirical correlation.  相似文献   

16.
垂直向上气液两相流中两相斯托拉赫数的研究   总被引:4,自引:0,他引:4  
试验研究了三角形、T形两种形状4种规格的物体,在垂直上升气液两相流中,发生气液两相涡街时,气液两相斯托拉赫数的变化规律,在测得大量数据的基础上,得出了发生气液两相涡街时,气液两相斯托拉赫数的通用关系式,研究表明,气液两相斯托拉赫数在两相工况下为一变数,其值与来流截面含气率、涡街发生体形状和特征尺寸、来流方向等因素有关,应用此关系式,根据测得的两相涡街频率可将涡街发生体作为测量两相流流量与组分的测量元件。  相似文献   

17.
To clarify the impacts of the hydrodynamic boundary layer and the diffusion boundary layer in the near wall zone on gas–liquid two-phase flow induced corrosion in pipelines, the hydrodynamic characteristics of fully developed gas–liquid slug flow in an upward tube are investigated with limiting diffusion current probes, conductivity probes and digital high-speed video system. The Taylor bubble and the falling liquid film characteristics are studied, the effects of various factors are examined, and the experimental results are compared with the data and models available in literature. The length of Taylor bubble, the local void fraction of the slug unit and the liquid slug, the shear stress and mass transfer coefficient in the near wall zone, are all increased with the increase of superficial gas velocity and decreased with the increase of superficial liquid velocity, whereas the length of liquid slug and the liquid slug frequency are changed contrarily. The alternate wall shear stress due to upward gas–liquid slug flow is considered to be one of the major causes for the corrosion production film fatigue cracking. A normalized formula for mass transfer coefficient is obtained based on the experimental data.  相似文献   

18.
The parameters of an axisymmetric turbulent two-phase swirling flow of a viscous heat-conducting gas containing a liquid dispersed phase in the presence of water vapor condensation on the particles are calculated. For the dispersed phase, a model taking into account the variation of the vapor concentration and the particle size due to condensation or evaporation is proposed. The distributions of the parameters of the basic unperturbed flow obtained numerically are used in the numerical solution of the linear problem of hydrodynamic stability within the time-dependent formulation. The parameters of small-amplitude harmonic perturbations propagating along the vortex axis are investigated in the linear formulation. A significant effect of heat release in the gas due to water vapor condensation on the parameters of the neutral perturbations and the neutral-stability curves is detected.  相似文献   

19.
This paper proposes a new method for equal quality distribution of gas–liquid two-phase flow by partial separate-phase distribution with a dual-header distributor. The upper and liquid (lower) headers are interconnected with five vertical downward arms. A gas–liquid two-phase mixture enters the distributor from the upper header where most of the liquid of the mixture is removed through the downward arms into the liquid header. Hence, firstly, the remaining gas-rich fluid can be uniformly distributed into the outlet branches, and then secondly, the liquid collected in the liquid header can be uniformly re-distributed into the individual outlet branches. Because both distribution processes are conducted in the condition of single or near single-phase flow, mal-distribution of the two-phase flow is essentially eliminated, and a satisfactory equal quality distribution of gas–liquid two-phase flow is reached. Experiments were conducted in an air–water two-phase flow test loop. The inner diameter of the inlet pipe was 60 mm, the superficial velocity ranges of gas and liquid were 3–32 m/s and 0.02–0.17 m/s respectively, and the quality ranged from 0.02 to 0.44. The flow pattern in the inlet pipe included stratified flow, wavy stratified, slug flow, and annular flow. The experimental results showed that this new method could significantly improve the distribution performance of the two-phase flow. The maximum quality deviation between each outlet branch and the inlet pipe is less than ±1% under the conditions of stratified, wavy stratified and slug flows in the upper header, and less than ±5% in annular flow.  相似文献   

20.
Pipelines conveying a multiphase mixture must withstand the cyclic induced stresses that occur due to the alternating motion of gas pockets and liquid slugs. Few previous studies have considered gas–liquid slug flow and the associated fluid–structure interaction problems. In this study, experimental and numerical techniques were adopted to simulate and analyze the two-phase slug flow and the associated stresses in the pipe structure. In the numerical simulation, a one-way coupled fluid–structure framework was developed to explore the slug flow interaction with a horizontal pipe assembly under various superficial gas and liquid velocities. A modified Volume of Fluid and finite element methods were utilized to model the fluid and structure domains. The file-based coupling technique was adopted to execute the coupling mechanism. By contrast, slug characteristics were measured experimentally, while Bi-axial strain gauges were used to capture time-varying strain signals. Excellent agreements between the predicted and measured stress results were achieved with a maximum error of 10.2 %. It was found that at constant superficial liquid velocity, the maximum induced stresses on the pipe wall increased with increasing the slug length and slug velocity. While for the slug frequency, the maximum principal stresses decreased with increasing the slug frequency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号