首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Photoluminescence spectra of powdered ZnS thermally doped with MnS are studied. Correlations are demonstrated between variations in the luminescence characteristics of ZnS:Mn, on one hand, and some features of radiation center formation and the diffusion of Mn in ZnS after processing, on the other. It is found that after manganese doping at a temperature (T = 800°C) lower than the phase transition temperature of ZnS, relaxation processes owing to diffusion of Mn in ZnS take place in the material over times as long as 6.103 h. It is shown that 6.103 h after doping the α-MnS phase is essentially completely dissolved in the volume of the ZnS. Diffusion of Mn in powdered ZnS is found to occur via several channels, rapid diffusion along interior boundaries and slow diffusion via interstitial space, which indicates the existence of different activation energies for diffusion of Mn depending on its localization within the ZnS lattice.  相似文献   

2.
Formation of zinc sulfide nanocrystals in aqueous solutions of various polymers has been studied. Spectral properties of ZnS nanoparticles have been investigated, the structure of the long-wave edge of the fundamental absorption band of ZnS nanocrystals has been analyzed. It has been shown that the variation of the synthesis conditions (stabilizer nature and concentration, solution viscosity, ZnS concentration, etc.) allows tailoring of the ZnS nanocrystals size in the range of 3–10 nm. Photochemical processes in colloidal ZnS solutions, containing zinc chloride and sodium sulfite, have been investigated. It has been found that the irradiation of such solutions results in the reduction of Zn(II), the rate of this reaction growing at a decrease in the size of ZnS nanoparticles. Kinetics of photocatalytic Zn(II) reduction has been studied. It has been concluded that two-electron reduction of adsorbed Zn(II) species is the rate-determining stage of this reaction. Photocatalytic activity of ZnS nanoparticles in KAu(CN)2 reduction in aqueous solutions has been discovered. Spectral characteristics and kinetics of ZnS/Au0 nanocomposite formation have been studied. It has been shown that the photoreduction of gold(I) complex is the equilibrium reaction due to the reverse oxidation of gold nanoparticles by ZnS valence band holes.  相似文献   

3.
Chemical bath deposition of ZnS thin films from NH3/SC(NH2)2/ZnSO4 solutions has been studied. The effect of various process parameters on the growth and the film quality are presented. The influence on the growth rate of solution composition and the structural, optical properties of the ZnS thin films deposited by this method have been studied. The XRF analysis confirmed that volume of oxygen of the as-deposited film is very high. The XRD analysis of as-deposited films shows that the films are cubic ZnS structure. The XRD analysis of annealed films shows the annealed films are cubic ZnS and ZnO mixture structure. Those results confirmed that the as-deposited films have amorphous Zn(OH)2. SEM studies of the ZnS thin films grown on various growth phases show that ZnS film formed in the none-film phase is discontinuous. ZnS film formed in quasi-linear phase shows a compact and a granular structure with the grain size about 100 nm. There are adsorbed particles on films formed in the saturation phase. Transmission measurement shows that an optical transmittance is about 90% when the wavelength over 500 nm. The band gap (Eg) value of the deposited film is about 3.51 eV.  相似文献   

4.
Transient absorptions have been obtained in powdered samples of ZnS : Ag, ZnS : Cu and undoped ZnS at room temperature by the technique of diffuse reflectance laser flash photolysis. For the undoped material an absorption was detected that maximises at 400 nm and decays non-exponentially with an initial half-life of (6.8±1.0)×10?6s. The absorption is assigned to a transition within a donor impurity. In the cases of ZnS : Ag and ZnS : Cu, broad featureless absorptions in the 500–850 nm region were recorded. These decays are non-exponential and have initial half-lives of (3.1±0.2) ms and (0.48±0.05) ms for the Ag- and Cu-doped phosphors, respectively. These transient absorptions are considered to occur from electron traps introduced by the metal dopant. Laser-induced emission was also studied, and only in the case of undoped ZnS was a correlation observed between the decay of the weak emission at 520 nm and the decay of the transient absorption.  相似文献   

5.
半导体量子点(QDs)具有发光效率高和发光波长可调等特点。采用胶体CdSe QDs作电致发光器件的有源材料,TPD(N,N′-biphenyl-N,N′-bis-(3-methylphenyl)-1,1′-biphenyl-4,4′-diamine)作空穴传输层,ZnS作电子传输层,研究了有机/无机复合发光器件ITO/TPD/CdSe QDs/ZnS/Ag的电致发光特性。TPD和CdSe QDs薄膜采用旋涂方法、ZnS薄膜采用磁控溅射方法沉积,器件表面平整。CdSe QDs的光致发光和电致发光谱峰位波长均位于~580 nm,属于量子点的带边激子发光。我们与以前的ITO/ZnS/CdSe QDs/ZnS/Ag发光器件结构进行了对比,发现新的器件结构的电致发光谱没有观察到QDs表面态的发光,而且新器件的发光强度是ITO/ZnS/CdSe QDs/ZnS/Ag结构的~10倍。发光效率的提高归因于碰撞激发与载流子注入两种发光机制并存的结果:一方面电子经过ZnS 层加速后,碰撞激发CdSe QDs发光;另一方面,空穴从TPD层注入CdSe QDs 与QDs中激发的电子复合发光。我们进一步研究了ZnS电子加速层厚度对发光特性的影响,选择ZnS薄膜的厚度分别是80,120 和160 nm,发现随着ZnS层厚度增大,器件启亮电压升高,EL强度增大,但是击穿电压降低。EL峰位随着ZnS厚度的减小发生明显蓝移,对上述实验现象进行了机理解释。  相似文献   

6.
Preparation of ZnS nanoparticles by ultrasonic radiation method   总被引:3,自引:0,他引:3  
2 S solution. ZnS nanoparticles were synthesized under ultrasonic radiation. They were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV spectrophotometry, and X-rayphotoelectron spectrometry (XPS). XRD revealed that the ZnS nanoparticles prepared have a zincblende structure. TEM observations showed that the ZnS nanoparticles are in a spherical form with an average diameter of 40 nm. XPS results proved that, for our sample, the binding energies of Zn 2p and S 2p are the same as those of bulk single-crystal, but the full widths at half maximum of the XPS peaks are larger than those of bulk single-crystal. Received: 22 September 1997/Accepted: 5 January 1998  相似文献   

7.
Fluorophosphate glasses doped with ZnS are studied. The properties of ZnS nanocrystals formed are determined using X-ray-diffraction analysis and optical spectroscopy. The size and the band-gap width of these crystals are determined by the Tauc method. It is shown that ZnS nanocrystals luminesce in the visible spectral region with a low (2–3%) absolute quantum yield.  相似文献   

8.
Ferromagnetic properties of Cu-doped ZnS: A density functional theory study   总被引:1,自引:0,他引:1  
Using plane-wave pseudopotential (PWPP) method, the magnetism and spin-resolved electronic properties of Cu-doped ZnS system are studied. Our calculations indicate that ferromagnetic (FM) state is ground state in Cu-doped ZnS. The FM coupling strength in ZnS doping with Cu fluctuates with the variation of distance between two dopants and the fluctuation gets larger with increase in distance. Room temperature ferromagnetism can be observed in Cu-doped ZnS with high dopant concentration. Formation energy calculation implies that the clustering effect is not obvious in Cu-doped ZnS. Thus, Cu-doped ZnS can be a promising dilute magnetic semiconductor (DMS), which promises to be free of magnetic precipitates.  相似文献   

9.
Core–shell CdS/ZnS nanoparticles in arachidic acid film were prepared through a novel Langmuir–Blodgett (LB) approach. Post-deposition treatment of the precursor LB multilayers of cadmium arachidate with H2S gas followed by intercalation of Zn2+ ions and further sulfidation result in the formation of CdS/ZnS nanoparticles in the LB film. The formation of these nanoparticles and resulting changes in layered structures were studied by FTIR and X-ray reflection measurements. The optical properties were studied using UV–vis absorption and photoluminescence spectroscopy. A red-shift in the absorption spectrum and enhancement of CdS excitonic emission together with reduction of surface states emission suggest that after the intercalation step, a thin layer of ZnS surrounds the CdS nanoparticles, thus forming a core–shell structure. Subsequent to the second sulfidation, a further red-shift in absorption suggests the formation of a thicker ZnS coating on CdS. Electron diffraction of CdS nanoparticles coated with thicker ZnS showed the diffraction patterns of only ZnS, as expected for core–shell structures.  相似文献   

10.
The dielectric properties of nano-particles of ZnS have been studied over a temperature range from 300 to 525 K. The dielectric constant, dielectric loss and ac conductivity of the samples are larger than those of bulk ZnS crystals. Dielectric properties of composites consisting of nano-particles of Ag of different concentrations dispersed in nano-particles of ZnS have also been studied.  相似文献   

11.
ZnS thin films are deposited on porous silicon (PS) substrates with different porosities by pulsed laser deposition (PLD). The photoluminescence (PL) spectra of the samples are measured at room temperature. The results show that the PL intensity of PS after deposition of ZnS increases and is associated with a blue shift. With the increase of PS porosity, a green emission at about 550 nm is observed in the PL spectra of ZnS/PS systems, which may be ascribed to the defect-center luminescence of ZnS films. Junction current- voltage (I-V) characteristics were studied. The rectifying behavior of I-V characteristics indicates the formation of ZnS/PS heterojunctions, and the forward current is seen to increase when the PS porosity is increased.  相似文献   

12.
Effects of ZnS:Mn/AlN multilayer structure on luminescent properties of nanostructured (NS) thin-film electroluminescent (TFEL) device of which emission layer is a multilayer composed with ZnS:Mn layers and 0.7-nm-thick AlN interlayers were studied. The bandgap widening and the increased PL efficiency of Mn2+ 3d-3d transitions with a decrease in the ZnS:Mn single-layer thickness down to 5 nm were observed, which is ascribed to quantum confinement effects. Meanwhile, the multilayer with 2-nm-thick ZnS:Mn single-layers shows a drop of PL efficiency, indicating the presence of defective region just on AlN. The tendency of the luminous efficiency of the NS-TFEL device against the ZnS:Mn single-layer thickness is similar to the tendency found in the PL efficiency, indicating the importance of the ZnS:Mn/AlN interface for the device performance.  相似文献   

13.
The field emission property of zinc sulphides nanorods synthesized in the thin film form on Si substrates has been studied. It is seen that ZnS nanorod thin films showed good field emission properties with a low-macroscopic turn-on field (2.9-6.3 V/μm). ZnS nanorods were synthesized by using radio frequency magnetron sputtering of a polycrystalline prefabricated ZnS target at a relatively higher pressure (10−1 mbar) and at a lower substrate temperature (233-273 K) without using any catalyst. Transmission electron microscopic image showed the formation of ZnS nanorods with high aspect ratio (>60). The field emission data were analysed using Fowler-Nordhiem theory and the nearly straight-line nature of the F-N plots confirmed cold field emission of electrons. It was also found that the turn-on field decreased with the decrease of nanorod's diameters. The optical properties of the ZnS nanorods were also studied. From the measurements of transmittance of the films deposited on glass substrates, the direct allowed bandgap values have been calculated and they were in the range 3.83-4.03 eV. The thickness of the films was ∼600 nm.  相似文献   

14.
ZnS films were deposited on porous silicon (PS) substrates with different porosities by pulsed laser deposition (PLD). The crystalline structure, surface morphology of ZnS films on PS substrates and optical, electrical properties of ZnS/PS composites were studied. The results show that, ZnS films deposited on PS substrates were grown in preferred orientation along β-ZnS (111) direction corresponding to crystalline structure of cubic phase. With the increase of PS porosity, the XRD diffraction peak intensity of ZnS films decreases. Some voids and cracks appear in the films. Compared with as-prepared PS, the PL peak of PS for ZnS/PS has a blueshift. The larger the porosity of PS, the greater the blueshift is. A new green light emission located around 550 nm is observed with increasing PS porosity, which is ascribed to defect-center luminescence of ZnS. The blue, green emission of ZnS combined with the red emission of PS, a broad photoluminescence band (450–750 nm) is formed. ZnS/PS composites exhibited intense white light emission. The I–V characteristics of ZnS/PS heterojunctions showed rectifying behavior. Under forward bias conditions, the current density is large. Under reverse bias conditions, the current density nearly to be zero. The forward current increases with increasing PS porosity. This work lay a foundation for the realization of electroluminescence of ZnS/PS and solid white light emission devices.  相似文献   

15.
The paper presents the original study of photoluminescence (PL) and Raman scattering spectra of core–shell CdSe/ZnS quantum dots (QDs) covered by the amine-derivatized polyethylene glycol (PEG) with luminescence interface states. First commercially available CdSe/ZnS QDs with emission at 640 nm (1.94 eV) covered by PEG polymer have been studied in nonconjugated states. PL spectra of nonconjugated QDs are characterized by a superposition of PL bands related to exciton emission in a CdSe core and to the hot electron–hole recombination via high energy luminescence states. The study of high energy PL bands in QDs at different temperatures has shown that these PL bands are related to luminescence interface states at the CdSe/ZnS or ZnS/polymer interface. Then CdSe/ZnS QDs have been conjugated with biomolecules—the Osteopontin antibodies. It is revealed that the PL spectrum of bioconjugated QDs changed essentially with decreasing hot electron–hole recombination flow via luminescence interface states. It is shown that the QD bioconjugation process to Osteopontin antibodies is complex and includes the covalent and electrostatic interactions between them. The variation of PL spectra due to the bioconjugation is explained on the basis of electrostatic interaction between the QDs and biomolecule dipoles that stimulates re-charging QD interface states. The study of Raman scattering of bioconjugated CdSe/ZnS QDs has confirmed that the antibody molecules have the electric dipoles. It is shown that CdSe/ZnS QDs with luminescence interface states are promising for the study of bioconjugation effects with specific antibodies and can be a powerful technique in biology and medicine.  相似文献   

16.
Zinc sulfide (ZnS) thin films have been deposited on microscopic glass and fluorine doped tin oxide substrates by nebulized spray pyrolysis technique with different substrate temperature and molar concentration. The structural, morphological, optical and electrical properties of the prepared ZnS thin films have been studied using X-ray diffraction (XRD), field emission scanning electronic microscopy (FESEM), UV–Vis spectrophotometer and Hall effect measurement. XRD patterns confirm that the prepared films are hexagonal wurtzite structure, with (100) as preferred orientation. The structural parameters such as crystallite size, dislocation density and microstrain have been calculated from XRD study. Hydrophilic and hydrophobic nature is revealed by contact angle measurements. FESEM image of the ZnS thin films show smooth and uniform spherical grains are uniformly arranged on the films surface. Optical transmittance spectrum illustrate that the ZnS films were high transparent in the visible region and gets absorbed in the UV region. The optical band gap value of the ZnS thin films decreased with the increasing substrate temperature. The average transmittance is found to be 82% and direct band gap value is 3.56 eV at 400 °C for set D. The Activation energy of the prepared ZnS films was determined from the graph between ln (ρ) versus temperature (K?1) using a four-probe method.  相似文献   

17.
孟立建  钟国柱 《发光学报》1989,10(4):290-295
本文报导了不同浓度的金属铒和氟化铒掺杂的硫化锌薄膜交流电致发光(ACEL)的特性,并进行了比较。实验结果表明:ZnS:ErF3薄膜ACEL的最佳浓度(5×10-3g/g)低于ZnS:Er3+薄膜ACEL的最佳浓度(1×10-2g/g)。在ZnS薄膜中掺入稀土离子,随着浓度的增加,稀土离子之间发生交叉弛豫,这一过程与稀土离子周围环境有关,这正是ZnS:ErF3和ZnS:Er3+薄膜ACEL具有不同的最佳浓度的主要原因。  相似文献   

18.
The presence of surfactants polyethylene glycol (PEG), polyvinyl pyrrolidone (PVP), sodium hexameta polyphosphate (SHMP) and tri-octyl phosphine oxide (TOPO) on the surface of Ni2+ doped ZnS (ZnS:Ni2+) nanoparticles resulted variation in their optical properties. The optical properties of each surfactant-capped ZnS:Ni2+ nanoparticles were investigated using UV–visible (UV–Vis) absorption and photoluminescence (PL) techniques. The absorption spectra and fluorescent emission spectra showed a significant blue shift compared to that of the bulk zinc sulfide. The effect of the optical properties in colloidal form (wet) and dry samples were investigated. Enhanced PL emission was observed for the dry samples at 80 °C. Thermal properties of the ZnS:Ni2+ was also studied using thermo gravimetric-differential thermal analysis (TG-DTA), Fourier transform infra-red spectrometer (FT-IR) and X-ray diffraction (XRD). The results are presented and discussed.  相似文献   

19.
The spectra of photoluminescence (PL), electroluminescence (EL), and optically detected magnetic resonance were studied in ZnS single crystals. It is shown that, in ZnS:Mn crystals, PL at λmax=590 nm excited with light in the extrinsic-absorption region for ZnS (λ = 365 nm) is controlled by the resonance-excitation mechanism; in contrast, the EL can be excited by both the resonance-and impact-related mechanisms.  相似文献   

20.
In this paper we report the synthesis of highly luminescent ZnS and Mn-doped ZnS nanoparticles with uniform particle size distribution by liquid phase pulsed laser ablation. The formation of nanosized ZnS crystallites was confirmed by high-resolution transmission electron microscopy (HRTEM) images. The optical properties of these nanoparticles were studied by room temperature photoluminescence (PL) spectra. The PL emission from the ZnS nanoparticles shows a sharp peak in the UV region (334 nm) corresponding to the band edge and a broad peak in the visible region which can be attributed to the sulphur vacancies, cation vacancies and surface states in the nanocrystals. The yellow emission from the Mn-doped ZnS nanoparticles can be attributed to the radiative transition between 4T1 and 6A1 levels within the 3d5 orbital of Mn2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号