首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 6 毫秒
1.
A proper vertex coloring of a graph is equitable if the sizes of color classes differ by at most one. The celebrated Hajnal-Szemerédi Theorem states: For every positive integer r, every graph with maximum degree at most r has an equitable coloring with r+1 colors. We show that this coloring can be obtained in O(rn 2) time, where n is the number of vertices.  相似文献   

2.
An ant-based algorithm for coloring graphs   总被引:1,自引:0,他引:1  
This paper presents an ant-based algorithm for the graph coloring problem. An important difference that distinguishes this algorithm from previous ant algorithms is the manner in which ants are used in the algorithm. Unlike previous ant algorithms where each ant colors the entire graph, each ant in this algorithm colors just a portion of the graph using only local information. These individual coloring actions by the ants form a coloring of the graph. Even with the lack of pheromone laying capacity by the ants, the algorithm performed well on a set of 119 benchmark graphs. Furthermore, the algorithm produced very consistent results, having very small standard deviations over 50 runs of each graph tested.  相似文献   

3.
Meyniel (Discrete Math.16 (1976), 339–342) proved that a graph is perfect whenever each of its odd cycles of length at least five has at least two chords. This result is strengthened by proving that every graph satisfying Meyniel's condition is strongly perfect (i.e., each of its induced subgraphs H contains a stable set which meets all the maximal cliques in H).  相似文献   

4.
5.
A Meyniel graph is a graph in which every odd cycle of length at least five has two chords. We present a linear-time algorithm that colors optimally the vertices of a Meyniel graph and finds a clique of maximum size.  相似文献   

6.
7.
Suppose that 0<η<1 is given. We call a graph, G, on n vertices an η-Chvátal graph if its degree sequence d1d2≤?≤dn satisfies: for k<n/2, dk≤min{k+ηn,n/2} implies dnkηnnk. (Thus for η=0 we get the well-known Chvátal graphs.) An -algorithm is presented which accepts as input an η-Chvátal graph and produces a Hamiltonian cycle in G as an output. This is a significant improvement on the previous best -algorithm for the problem, which finds a Hamiltonian cycle only in Dirac graphs (δ(G)≥n/2 where δ(G) is the minimum degree in G).  相似文献   

8.
The graph coloring problem is to color a given graph with the minimum number of colors. This problem is known to be NP-hard even if we are only aiming at approximate solutions. On the other hand, the best known approximation algorithms require nδ (δ>0) colors even for bounded chromatic (k-colorable for fixed k) n-vertex graphs. The situation changes dramatically if we look at the average performance of an algorithm rather than its worst case performance. A k-colorable graph drawn from certain classes of distributions can be k-colored almost surely in polynomial time. It is also possible to k-color such random graphs in polynomial average time. In this paper, we present polynomial time algorithms for k-coloring graphs drawn from the semirandom model. In this model, the graph is supplied by an adversary each of whose decisions regarding inclusion of edges is reversed with some probability p. In terms of randomness, this model lies between the worst case model and the usual random model where each edge is chosen with equal probability. We present polynomial time algorithms of two different types. The first type of algorithms always run in polynomial time and succeed almost surely. Blum and Spencer [J. Algorithms, 19 , 204–234 (1995)] have also obtained independently such algorithms, but our results are based on different proof techniques which are interesting in their own right. The second type of algorithms always succeed and have polynomial running time on the average. Such algorithms are more useful and more difficult to obtain than the first type of algorithms. Our algorithms work for semirandom graphs drawn from a wide range of distributions and work as long as pn−α(k)+ϵ where α(k)=(2k)/((k−1)(k+2)) and ϵ is a positive constant. © 1998 John Wiley & Sons, Inc. Random Struct. Alg., 13, 125–158 (1998)  相似文献   

9.
A Branch-and-Cut algorithm for graph coloring   总被引:1,自引:0,他引:1  
In this paper a Branch-and-Cut algorithm, based on a formulation previously introduced by us, is proposed for the Graph Coloring Problem. Since colors are indistinguishable in graph coloring, there may typically exist many different symmetrical colorings associated with a same number of colors. If solutions to an integer programming model of the problem exhibit that property, the Branch-and-Cut method tends to behave poorly even for small size graph coloring instances. Our model avoids, to certain extent, that bottleneck. Computational experience indicates that the results we obtain improve, in most cases, on those given by the well-known exact solution graph coloring algorithm Dsatur.  相似文献   

10.
Given an undirected graph G=(V,E)G=(V,E) with a set V of vertices and a set E of edges, the graph coloring problem consists of partitioning all vertices into k independent sets and the number of used colors k is minimized. This paper presents a memetic algorithm (denoted by MACOL) for solving the problem of graph coloring. The proposed MACOL algorithm integrates several distinguished features such as an adaptive multi-parent crossover (AMPaX) operator and a distance-and-quality based replacement criterion for pool updating. The proposed algorithm is evaluated on the DIMACS challenge benchmarks and computational results show that the proposed MACOL algorithm achieves highly competitive results, compared with 11 state-of-the-art algorithms. The influence of some ingredients of MACOL on its performance is also analyzed.  相似文献   

11.
Acta Mathematicae Applicatae Sinica, English Series - Let G be a graph and H a subgraph of G. A backbone-k-coloring of (G, H) is a mapping f: V(G) → {1, 2, ···, k} such that...  相似文献   

12.
We present in this article an evolutionary procedure for solving general optimization problems. The procedure combines efficiently the mechanism of a simple descent method and of genetic algorithms. In order to explore the solution space properly, periods of optimization are interspersed with phases of interaction and diversification. An adaptation of this search principle to coloring problems in graphs is discussed. More precisely, given a graphG, we are interested in finding the largest induced subgraph ofG that can be colored with a fixed numberq of colors. Whenq is larger or equal to the chromatic number ofG, then the problem amounts to finding an ordinary coloring of the vertices ofG.  相似文献   

13.
Coja-Oghlan and Taraz [Amin Coja-Oghlan, Anusch Taraz, Exact and approximative algorithms for coloring , Random Structures and Algorithms 24 (3) (2004) 259-278] presented a graph coloring algorithm that has expected linear running time for random graphs with edge probability p satisfying np≤1.01. In this work, we develop their analysis by exploiting generating function techniques. We show that, in fact, their algorithm colors Gn,p with the minimal number of colors and has expected linear running time, provided that np≤1.33.  相似文献   

14.
We consider the problem of generating a coloring of the random graph ??n,p uniformly at random using a natural Markov chain algorithm: the Glauber dynamics. We assume that there are βΔ colors available, where Δ is the maximum degree of the graph, and we wish to determine the least β = β(p) such that the distribution is close to uniform in O(n log n) steps of the chain. This problem has been previously studied for ??n,p in cases where np is relatively small. Here we consider the “dense” cases, where np ε [ω ln n, n] and ω = ω(n) → ∞. Our methods are closely tailored to the random graph setting, but we obtain considerably better bounds on β(p) than can be achieved using more general techniques. © 2009 Wiley Periodicals, Inc. Random Struct. Alg., 2009  相似文献   

15.
The following computational problem was initiated by Manber and Tompa (22nd FOCS Conference, 1981): Given a graphG=(V, E) and a real functionf:VR which is a proposed vertex coloring. Decide whetherf is a proper vertex coloring ofG. The elementary steps are taken to be linear comparisons. Lower bounds on the complexity of this problem are derived using the chromatic polynomial ofG. It is shown how geometric parameters of a space partition associated withG influence the complexity of this problem. Existing methods for analyzing such space partitions are suggested as a powerful tool for establishing lower bounds for a variety of computational problems.  相似文献   

16.
We present an approach based on integer programming formulations of the graph coloring problem. Our goal is to develop models that remove some symmetrical solutions obtained by color permutations. We study the problem from a polyhedral point of view and determine some families of facets of the 0/1-polytope associated with one of these integer programming formulations. The theoretical results described here are used to design an efficient Cutting Plane algorithm.  相似文献   

17.
A new coloring theorem of Kneser graphs   总被引:1,自引:0,他引:1  
In 1997, Johnson, Holroyd and Stahl conjectured that the circular chromatic number of the Kneser graphs KG(n,k) is equal to the chromatic number of these graphs. This was proved by Simonyi and Tardos (2006) [13] and independently by Meunier (2005) [10], if χ(KG(n,k)) is even. In this paper, we propose an alternative version of Kneser's coloring theorem to confirm the Johnson-Holroyd-Stahl conjecture.  相似文献   

18.
19.
20.
We give a simple algorithm for finding a minimum weight odd circuit in planar graphs. By geometric duality, the same algorithm can be used to find minimum weight odd cuts. For general sparse graphs, the fastest known algorithms for these two problems take time and time, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号